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FOREWORD

The investigation described herein was performed by Dr. R. E. Bunney,
Division of Marine Resources, University of Washington, under Contract No.
DAAG 17-73-C-0028 for the U.S. Army Cold Regions Research and Engineering
Laboratory, sponsored by the Advanced Research Project Agency under ARPA
Order 2096.

This contract was technically monitored by Dr. Y. Nakano, US. Army
Cold Regions Research and Engineering Laboratory, under the instruction
of Commander J.R. Seesholtz, Program Manager, ARPA.
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SUMMARY

The principal objective of this investigation was to experimentally
determine the feasibility of using acoustic pulse echo techniques to mea-
sure the thickness of sea ice. Field tests performed on both winter and
annual sea ice showed that a pulse echo technique is entirely feasible if
1) adequate coupling between the sound source and the ice surface is ob-
tained, and 2) either the source levels are kept sufficiently high or the
frequency is kept low enough that the wavelength of the sound is large
compared to the size of the sound-scattering centers in the ice. Our mea-
surements of the compressional and shear wave velocities parallel to the
axis of the ice indicate that such thickness measurements can be accurate
to within 1.5%.

The tests indicated that the acoustic impedance mismatch at the ice-
water interface is sufficient to allow the use of either the compressional
or the shear wave. Before the shear wave could be used, however, an effi-
cient method would have to be found for establishing a reliable bond between
the ice and the acoustic source. We did not obtain sufficient data to
verify reports in the literature that seasonal variations in both the com-
pressional an. shear wave velocities approach 20%.,

Using the results of this experiment, we empirically predicted the
depth dependence of the elastic constants in the ice and the velocity of

the vertically polarized shear wave. The average values of these predic-
tions are consistent with those reported in the literature.

The attenuation of both the shear and the compressional wave was then
calculated using a combination of viscoelastic and scattering theory. The
theory was parametrically fit to measured values, and the results compared
favorably with those of other experiments.

Finally, preliminary studies were performed to determine to what

extent acoustic surface waves are propagated in sea ice, and to estimate
the feasibility of utilizing these modes for thickness measurements. Based
on the results of this study and theoretical considerations, it appears
that the symmetric Lamb wave could be useful for making ice thickness
predictions.
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INTRODUCTION
Activities in ice covered regions require a knowledge of ice thick-

ness to assure safety of equipment and personnel. This knowledge is
especially important during exercises that call for the operation of
heavy equipment, for example, tL employment of aircraft on ice runways
for logistical support.

During the last 75 years, many studies of ice have been performed to
understand its physical, mechanical and chemical properties. A thorough
discussion of this work has been published by Weeks and Assur.' Even
though some of these studies indicate that ice is a relatively good con-
ductor of acoustic disturbances, an efficient method of acoustically deter-
mining ice thickness from the top surface still does not exist, instead,
indirect ice thickness measurements are presently based on other physical
characteristics of ice and water, such as dielectric permittivity, dielec-
tric loss tangent in ice and in seawater, or elastic oscillations of the
total ice cover.

Simple calculations using the idealized assumption of i-.otropic, homo-
geneous ice indicate that, because of the low acoustic impedance mismatch
at the ice-water interface, an acoustic compressional wave incident on the
boundary will be almost entirely transmitted into the water medium. Con-
versely, because the water will not support shear waves, the shear stress
is assumed to vanish at the boundary indicating that the wave will be
totally reflected at normal incidence. Thus, neglecting real and apparent
attenuation, it would appear from this simple argument that the best meth-
od of determining ice thickness acoustically from the top surface would be
to generate a shear wave in the ice and, knowing the wave speed, calculate
the thickness from the reflection of the wave from the ice-water interface.

This ideal model is, of course, a gross oversimplification of the
.. physics of the problem. It is known that sea ice is not a simple medium,

but rathei' a highly complex inhomogeneous, anisotropic, polycrystalline
viscoelastic material for which the acoustic propagation characteristics
may be dependent on the growth and life history. The principal areas of
concern to be resolved before ice thickness can be reliably measured acous-
tically are the velocity and attenuation of the various acoustic modes in
the medium and the acoustic impedance mismatch of the ice-water interface.

The acoustic velocity data reported for both fresh and saline ice
have been acquired by one of three techniques:

A. Seismics,2- 7 where the bulk sound velocities are determined indi-
rectly rom measurements of the longitudinal plate waves. Al-
thoughithis technique is satisfactory for "order of magnitude"
estimations, it does contain several deficiencies which include:

SI1. The propagation velocities of the plate wave are highly dis-
persive with the thickness of the medium as was theoretically

predicted by Lamb, 8 Osborn and Hart, 9 and Bunney and Goodman 0
and experimentally verified by Bunney et al.11 Therefore,
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unless the experimentor is very careful to assure that the
wavelength is long compared to the ice thickness, large
variations in the measured velocity can occur.

2. The medium is anisotropic, and therefore exhibits no true
"bulk velocity." Thus, measurements of long-range acoustic
propagation in the ice layer yield information on only one
component of the velocity vector, and even this is based on
the assumption that the medium is homogeneous which, of
course, it is not.

3. Because of the distances involved with this technique, the
data received at the sensor have been both temporally and
spatially averaged. The information received therefore gives
little detail regarding the microstructure of the medium.

B. Resonance methods, 1 2'1 3 where the velocities in the medium are re-
lated to the normal modes of vibration of the sample. With this
techniquo it must be assumed that the test section being measured
is homogeneous because inconsistencies in the material will gen-
erate dispersive effects thereby altering the measured nodes and
antinodes of the resonant column. For natural sea ice, this is
an invalid assumption.

C. Direct determination of the velocity by measuring the time of
flight of an acoustic pulse traversing ice samples of known thick-
ness. Research using this technique has been related to velocity
measurements in single ice crystals, 14,15 measurements of lake
ice and/or commercially available isotropic ice, '- ' or quasi in
situ velocity measurements in sea ice. 1 9- 2 1 Of the latter, only
Bunney and Hanse have reported the internal velocity structure of
the medium and related it to values of previously measured bulk
wave properties.

The attenuation of a sound wave propagating in a material that is not
perfectly elastic, homogeneous and isotroT'Lc can be considered to be the
result of two mechanisms: (I) dissipationi processes originating from
internal friction, anelastic behavior of the material, thermal dissipation,
viscous slippage at crystal boundaries, etc., and (2) scattering originat-
ing from the interaction of the acoustic wave with scattering centers in
the medium. The relative contribution of eaca of these mechanisms to the
total attenuation depends on the frequency of the sound wave. At low fre-
quencies, the wavelength of the sound is very large compared to the scat-
tering centers; the scattering cross section, i.e., the relative amount of
energy scattered out of the incident wave, is therefore extremely small
and the attenuation is due almost entirely to dissipation. As the fre-
quency increases, the attenuation due to scattering becomes more important
until, when the wavelength becomes approximately on the order of the size
of the scattering center, scattering predominates. The attenuation of
the compressional wave has been experimentally measured by Pounder and
Langleben, 2 2 and the attenuation of both the transverse and compressional
waves in annual sea ice has been mathematically approximated by Hanse and

Bwny23 ,24S•- ~Bunney.2•2
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Although similarities exist between sea and freshwater ice, the dif-
ferences in structure and composition are sufficient to preclude mutual
substitution of experimental data. For a detailed comparison of fresh-
water ice and sea ice, the reader is referred to the excellent text on the
subject by Pounder. 1 9  It should also be pointed out that Hunkins 4 has
demonstrated that the physical properties of sea ice exhibit large seasonal
variations. Perennial ice, that which has existed for more than one sea-
son, changes through the process of free flooding during the summer months
and differs greatly from annual ice, that which is less than I year old.

EXPERIMENTAL TECHNIQUE AND RESULTS
The experiments reported here were performed in the Chukchi Sea near

Pt. Barrow, Alaska, during March 1973. A comparative study of the acoustic
properties of annual and perennial ice during this season was planned, but
only annual ice samples were available because of unavoidable logistic
difficulties. A comprehensive investigation of the acoustic properties of
first year sea ice was therefore performed. The data presented are from
that portion of the study that utilized direct measurement techniques to
determine the depth depenjience of the acoustic parameters.

RESULTS OF EXPERIMENTAL MEASUREMENTS

Numerous ice samples were acquired by extracting vertical cores from

the ice canopy with a 10-cm diameter SIPRE coring tool. The average depth
of the ice was approximately 145 cm and, with the exception of one core
where the skeleton structure of the ice-water interface was lost, the
lengths of the recovered samples were within 2 cm of the measured ice
depth. The temperature profile was obtained by inserting a thermometer
in small holes drilled along the extent of the core at 6-7 cm increments.
The first temperature taken was near the bottom of the core because of the
large temperature difference between that location and the ambient. The
composite* results of the temperature tests for all cores are given in
Figure 1. It is obvious that the technique employed, although used in
similar experiments, 16 ,17 is not adequate to predict the temperature pro-
file. Even after 2 or 3 minutes the bottom of the core cools by 4-5*.
Because 15-20 minutes were required to obtain an entire contour by this
method, errors of 100C or more are likely. As will be explained later,

ýthe best estimate of the core's temperature profile during the experiment
is given by

T = (0.137z - 21.7) , (1)

where z is the depth from the surface in centimeters and the average
ambient air temperature was -21.70C. This gradient is shown as the
broken line on Figure 1.

*The data points presented in Figures 1 and 3-6 were obtained by plotting

the raw data as a ftuction of depth from the surface, interpolating
between points and then averaging over all samples at S-cm increments.
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After the temperature measurements, the cores were cut into lengths of
6 or 7 cm and each segment was referenced relative to its position in the
sample. The compressional wave velocities parallel and perpendicular to
the sample axis were then obtained for each section using the instrumen-
tation diagramed in Figure 2. In this system, a pulse timing generator
furnishes pulse length and rate information to a pulsed power oscillator
and a trigger signal to the oscilloscope. The oscillator in turn provides
a cw pulse of the desired frequency, rate and length to a BaTiO3 transducer
coupled to the sample. The transmitted acoustic signal is received by a
second transducer coupled to the opposite side of the test section, ampli-
fied, and transmitted to the oscilloscope. The time of flight of the
acoustic pulse in the sample is determined by measuring with a calibrated
time delay the oscilloscope sweep time from the origin to the first re-
ceived signal, and then correcting for electronic time losses (7 psec for
this system). Knowing the specimen length, the velocities can then be
calculated. This method is accurate to approximately 1-1/2%, where the
largest error is related to the length measurement.

PULSE TIMING GENERATOR

OUT OUT
PULSE

GIAT E

PULSED POWEROSCILLATOR k,.TRIG IN VERT IN
PULSE, OUT

PREAMPLIFIER IN OUTICE SAM PLE)

TRANSMITTING RECEIVING

- TRANSDUCER TRANSDUCER

Figure 2. Block diagram of instrumentation for acoustio veLocity
measurements,

Figures 3 and 4 show the results of the velocity measurements. The
velocity profiles exhibited in the graphs increase rapidly for the first
50-55 cm, and then decrease to minima at -70 cm depth. It is unlikely
that these minima are characteristic of all annual sea ice because the
ice had obviously undergone severe "rafting" earlier in the growth season.
Visual inspection of the cores revealed a "frazil" layer in the region of
70 cm indicating that the area had been "rafted" at least once. Below
the 70-cm minima the profiles increase again to maxima at roughly 100 cm
and then decrease toward the seawater sound velocity at the ice-water
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interface. The average velocities measured for the vertical and horizontal
directions were 3840 m/sec and 3635 m/sec, respectively. The velocities
compare favorably with results obtained by the bulk velocity measurements
reported by other investigators as shown in Table I, page 9.
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The experimental results of the sample density measurements are shown
in Figure 5 and demonstrate that for depths greater than approximately 100
cm the density increases markedly, indicating a higher liquid saturation.
From the "idealized" temperature gradient shown in Figure 1, the in situ
medium is predicted to have a temperature of -8.0 0 C at depths greater than
100 cm. Pounder19 and Assur 20 show that as the temperature of ideal sea-
water is lowered through the freezing point a two-part system consisting
of solid H20 and uniform brine is formed. Continuing to lower the temper-
ature results in the solidification of sodium sulfate at about -8 0 C form-
ing a three-part system of solid H20, solid Na2SO4.10H20 and brine. This
situation exists to approximately -22CC where sodium chloride (NaCl'2H20)
solidifies. Thus, the increase in density below depths of 100 cm is due
to the decreasing amount of solid salt present.

After the temperature and density measurements, the segments were
melted and the salinity was measured. The average salinity profile is
shown in Figure 6. Although not as large as expected, particularly near
the bottom, the depth contour is characteristic, showing increased salini-
ty near the top, which is caused by a thermal gradient across the elongated
brine cells, and near the bottom because of gravity.

APPROXIMATION OF THE ELASTIC MODULI AND TRANSVERSE VELOCITY PROFILES

It was demonstrated earlier that the acoustic parameters measured

exhibit dependence with depth into the medium. Utilizing the results of
the reported experiment, an approximation to the structure and a predic-
tion of the average values of the transverse velocity and elastic moduli
can be made. To accomplish this it is assumed 'that the measurement fre-
quency is sufficient to ignore the viscous terms in the propagation equa-
tion, or equivalently, that the viscous terms do not greatly affect the
velocity. An elastic medium is thus assumed, for which, according to
elasticity theory, the longitudinal and transverse wave velocities are
given by

p (l "a)(l-2a) = p(2)

SCTU E 1
p 2( l+a)

where

CL is the velocity of the longitudinal wave
] CT is the velocity of the transverse wave

H is Young's modulus

V is the shear modulus

X is the Lame' constant

12
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p is the density of the medium

a is Poisson's ratio.

There are two empirical equations in the literature that associate
Young's modulus (E) with the chemical properties of the medium. Pounder
and Stalinski17 related this parameter to the salinity (S) by

E = (9.75 - 0.242 S) x 1010 dyn/cm2  ; (3)

however, their work was performed at constant temperature. Langleben' 8

related Young's modulus to the brine content (v) by

E = (10.0 - 35.1 V) x 1010 dyn/cm2  . (4)

The brine content in this equation can be determined from the salinity and
temperature by the relations 25

S s S(F - 2.28) - 2.060 < e -0.5"

S 4917 + 0.93 8.2 _0 <e -2.060 (5)

where

S is the salinity in parts per thousand
V3 is the brine content in parts per thousand
0 is the temperature in degrees Celsius.

Because the temperature dependence is included in Eq. 5 it is expected to
give a more accurate estimate of Young's modulus than Eq. 4.

As was discussed earlier, the method used to measure the temperature
profile during the experiment could lead to large errors because of the
temperature difference between the sample and ambient, and the time re-
quirt4 to perform the tests. To reconstruct the in situ conditions, we
have referred to Untersteiner's2 approximation of the thermal conductiv-
ity in sea ice,

Ki = ijf T-273" b

where

"S(z) a salinity at depth z

0 - 0.28 cal cm2 /g sec
Sif - 0.00486 cal/cm sec °K

T - temperature in degrees Kelvin.
1

13I
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Examination shows that for absolute temperature values greater than a few
degrees and salinities on the order of a few parts per thousand, the sec-
ond term of this equation can be neglected, yielding a constant thermal
conductivity. These conditions are applicable to the problem being dis-
cussed, and allow the assumption of a linear temperature gradient between
the average ambient during the experiment (-21.7°C) and the seawater
freezing temperature (-1.8 0C).

Thus, using the relationship

T = (0.137z - 21.7) 0 C

and the experimental values of the longitudinal velucity, density and
salinity, the depth dependence of the brine content can be approximated
along with Young's modulus, Poisson's ratio, the transverse velocity, the
shear modulus and the Lame' constant. The results of these calculations
are shown in Figures 7 through 12.*

I

1" Each of the results presented can be reduced to an empirical relationship
with depth. However, the temptation to do so has been resisted because

the data may be unique to the medium for the 1973 season. The dependency
with depth shown in the figures has been derived from the raw data
acquired and thus will show structure which may not be reproducible in
future experiments.
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DISCUSSION OF THE RESULTS OF THE PROFILE MEASUREMENTS

In order to evaluate the credibility of the order of magnitude esti-
mates, the results of our predictions and those reported by others are
compared in Table I. Wide variations do occur for some of the values, but
in general the predicted values and the average of the experimental data
compare very well with those reported in the literature.

Shear wave velocity profile experiments have yet to be successfully
performed in sea ice because of the difficulty in establishing a reliable
bond between the ice and shear wave generating transducers. This diffi-
culty is largely because the brine "leaches" and produces a highly saline,
liquid surface layer. Washing the bonding surface with fresh water has
been partially successful in laboratory and in situ tests. For example,
the experiment shown in Figure 13 was attempted during the field tests
reported here. Channels in the ice canopy were cut to a depth of -45 cm
and located a known distance apart. The sides of the channel were washed
with fresh water to eliminate the saline boundary layer. The shear-sensi-
tive transducedrs were quickly coupled to the ice on diametrically opposite
sides of the test section at a depth of 15 cm. The electronics used were
the same as shown in Figure 2. The time of flight and distance were mea-
sured, after which the sample size was incrementally decreased and the
process repeated.

The average value of this measurement was 1923 m/sec and is shown as

a triangle in Figure 10. Further laboratory measurements of shear wave
velocity on sea ice samples show an average of 1870 m/sec, compared to a
predicted average profile velocity of 1874 ui/sec. Because sea ice is
anisotropic, it should be pointed out that these values are for the verti-
cally polarized shear wave. The horizontally polarized wave was measured
in a separate experiment and will be discussed later in this report.

Figure 7 reinforces the earlier discussion on density by showing

that the brine content increases rapidly for depths greater than 100 cm.
However, unlike the "ideal" seawater case where the sodium sulfate solid-
ifies discontinuously at approximately -8.0 0C this calculation shows that
at least some of the salts solidify uniformly with decreasing temperature.

TRANSMkTTER RECEIVER

S• SURFACE

Si
S • Figure 13. Crosa se.ction of in sit-f shear wave experiment.
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Although Young's modulus (Figure 8) decreases precipitously below
-8 0 C, indicating a rapid decrease in the material elasticity, the form of
the shear modulus (Figure 1U) is physically more interesting. Because
this parameter must vanish at the ice-water interface, and because in the
calculation it appears to be uniformly approaching that asymptote, it is
not anticipated that a significant acoustic impedance mismatch for the
shear wave will occur at the boundary. If the calculation were definitive,
the interface would not be a good acoustic reflector for the transverse
mode. However, since strong echoes of this mode have been observed in
situ, it is obvious that greater consideration must be given to the thoory
for the transition region.

PREDICTIONS OF ACOUSTIC ATTENUATION IN SEA ICE

Before the feasibility of measuring sea ice thickness acoustically
can be determined, the attenuation of sound in the medium as a function
of frequency must be either measured or estimated. As discussed earlier,
the attenuation of a sound wave propagating in a material that is not per-
fectly elastic, homogeneous and isotropic is largely dependent on two
mechanisms: (1) dissipation processes originating from internal friction,
anelastic behavior of the material, thermal dissipation, viscous slippage
at crystal boundaries, etc., and (2) scattering originating from the
interaction of the acoustic wave with scattering centers in the medium.

LONG WAVELENGTH ISOTROPIC SOLUTION

For wavelengths that are long compared to the size of the scattering
center, the calculation of acoustic velocity and attenuation can be de-
rived ignoring the contributions due to scattering. Even though not all
of the internal mechanisms contributing to the dissipation processes are
known, the general theory can be developed by grouping all attenuation
into a common source. This is accomplished mathematically 2 7 by replacing
the shear modulus (M) and. the Lame' constant (A) in the elastic stress-
strain relationship with the first order differential operators

A X + (7)at

where the unprimed terms denote the elastic and the primed terms denote
the viscous (or attenuative) contributions.

22
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*1i
Consider an acoustic shear wave* moving in the positive (downward) z-

direction. The displacement potential is given by

Aei(wt - az) (8)

where

w is the circular frequency
t is the time
a is the complex wavenumber.

This displacement potential obeys the wave equation

P21= M V2 ~p M V ,(9)
at2

where p is the density of the medium and V2 is the Laplacian operator.
Substituting Eqs. 7 and 8 into Eq. 9 and carrying out the operations gives
the relation

pW2 =cU2 (p + i(J) , (10)

where p' is the dissipative coefficient. For an attenuative medium, the
complex wavenumber can be written as

k - il)

* where

k is the running vector, w/c
c is the wave velocityj T is the generalized attenuation.

Making this substitution into Eq. 11 and separating the real and
ima~ginary components yield the simultaneous equations

"pa = Z(k 2 _ T2 ) + 2u'wkT
(12)

0 = ,4'(k 2 -T 2 ) -21kAT

Setting

*The derivation for the compressional wave propagation is similar to that
presented here, the difference being the introduction of the (A + 2M)
operator in the wave equation, Eq. 9, rather than the shear modulus (M)
operator. The displacement potential must, of course, be associated with
the compressional rather than the transverse wave.
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these equations have the solutions

k 2 1jP 2

(13)

I1 + R2W2

where both p and R may be frequency dependent. The procedure from this
point is to introduce a mathematical model of the medium composed of
elastic and viscous constants that are frequency independent, and then
fit the results to experimental data.

Maxwell' 8 suggested that viscoelastic materials could be represented
by ai. elastic element (spring) in series with a viscous element (dashpot)
as shown in Figure 14. Voigt 2 9 placed these elements in parallel as in
Figure 15. Detailed mathematical analysus of these as well as more com-
plex models are covered in 5tandard texts 3-32 and will not be discussed
here. However, it can be •hcwn that for the Maxwell model

krimWf
• =---ff , i +-Em m, _ 1

(14)

where

E w2

+ m
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E m Figure 14. Maxwell's mechanical representationE m of viscoelastic eolids.

Ev J V Figure 15. Voigt 's mechanical representa-
týon of viacoetastic solids.

For the Voigt model

!T r'• 1¢ E, 'Y
(17)

+ k2+ 1

2 i
2 E2

where

RLA- (Ev/nv)C

i jVery few solids behave like either the Maxwell or the Voigt model.
However, since more complicated models become extremely involved mathe-
matically, and because models specifying a greater number of parameters
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require more experimental evidence to substantiate their validity, using
a single Maxwell or Voigt element is a convenient method of obtaining a
first order approximation of a viscoelastic solid's mechanical properties.
This is especially true if there are only limited data on the material,
as is the case for sea ice.

SHORT WAVELENGTH SOLUTION

When sea ice freezes, the brine in the water concentrates in small
pockets. The result is frozen water with imbedded scattering centers
filled with a highly saline brine. Although these inclusions can have
various geometries, the author has observed that the vast majority in
annual sea ice are spheroidal. This may not hold for other types of sea
ice, e.g., multi-year ice, but the acoustic and microscopic analysis nec-
essary for evaluation of other types of sea ice has not been done. For
the purposes of this calculation, it will be assumed that all of the
scattering centers are brine-filled spheres.

To evaluate the attenuation due to scattering, distribution functions
in the medium must be either known or assumed. Because the necessary data
"are presently unavailable, and to minimize the complexity of the calculation,
the following assumptions have been made:

(a) No interaction exists between the scattering centers, and the
wave, on.'e scattered, will not be re-scattered back into the
sound beam. Since second order scattering should have only a

I I small effect, particularly in the Rayleigh scattering region,
* this assumption should not greatly affect the calculation

accuracy.

(b) There are N scattering centers per unit volume and the centers
are uniformly distributed throughout the medium. From obser-
vations in the laboratory, this assumption appears to be
reasonably valid.

(c) All of the scattering centers are the same size, with a radius
ao. In fact, the brine pocket sizes vary widely; however, if
radius ao is selected as the average bubble size, then it can
be argued that only the larger bubbles in the distribution will
significantly affect the scattering.

Using these assumptions, the attenuation due to scattering can be

N

scattering I Y Y(a.) , (19)

where y(ao) is the scattering cross section of a single scatterer of
radius a0 (see Appendix A for the cross section calculation). Because
of (c), above, this equation predicts the minimum attenuation to be
e.xpected from t'tis mechanism.
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Laboratory measurements of scattering centers in annual sea ice give
radii on the order of 0.065 cm and concentrations on th- order of 25 holes
per cubic centimeter. Using the results of the cross section calculation
in Appendix A and the relation

21N
kau-a * (20)c

where v is the frequency in hertz, c is the velocity in centimeters/second,
and a is the radius in centimeters, the attenuation due to scattering for
values of ka<l and ka>15 c4 be app2oximated by

4
"4.403 x 10- + 6.097 x 10 V

and

4
V dB/m(2

Qcomp 2.294 x 1-3+ 3.253 X 410- 3 Vm 422

where v is in megahertz. For values of l<ka<15, the approximations of
Eqs. 21 and 22 are still morc or less valid for order of magnitude cal-
culations, but will invariably yield predictions that are significantly
low.

4 TOTAL ATTENUATION APPROXIMATION

As was discussed earlier, the attenuation in sea ice is composed of
two parts,

a- • "dissipation÷ 4*scattering •(23)

C.;:Before the total attenuation can be estimated, the attenuation due to
dissipation must be considered. The experiment shown in Figure 13 gives
the results necessary for an approximation to the solution of the two-
element models. During this experiment, the total attenuation and ve-
locity were measured in situ 15 cm below the surface in annual sea ice.

At 100 kHz, the results of these measurements gave a longitudinal wave
1923 mty c, 3790 m/sec, a vertically polarized shear wave velocity of

1923 m/sec, an average density of 0.937 g/cm. , and a generalized attera-
uation of 0.18 dB/cw. Using these values, and assuming the elastic and
viscous constaits to be frequency independent, both the Voigt and the
Maxwell models were solved as a function of frequency. The results are
shown in Figure 16, along with the scattering attenuation for the shear

V !wave. From this representation, it can be concluded that for frequencies
above approximately 5 kHz the Maxwell model fails because in nature there
is no observed frequency region over which the attenuation remains con-
stant. Thus, assuming the Voigt solution, the total attenuation can be
approximated by

I2
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4 kSa~m - .9 0•+323xl-V + 144

w s j i+106.1v - 11
shear 4.403 x 10- 5 + 6.097 x 10",)22 0.895V

•' where

4 -658.4\2 %1+276.492 +
c| 1+276.4v

(2S)

1k2 a 903 . l\)2 I 1i+06"1 I+ + 1
5 l+16.lv2

and v is in megahertz.

"The solution to Eq. 24 is shown in Figure 17 along with some exper-
imental data of Langleben and Pounder 2 2 on compressional wave attenuation
taken in situ in Tanquary Fiord, Ellesmere Island, during 1967. Although
it appears that the theory predicts values of attenuation several decibels
too high in the I-5 kHz region, the form of the frequency dependence is
consistent in that the form of the observed relaxation is predicted.
Further, the fact that the theory is quite sensitive to the radius of the
scattering centers could account for this difference between the prediction
and the observed data. Differences in brine pocket sizes and hence devi-
ations in the attenuation could be expected in any event, since Langleben
"measured the attenuation on 2-year sea ice in a fiord, while the curves
were empirically fit to data obtained on annual ice in the Arctic Ocean.

DEPTH DEPENDENCE OF THE ATrENUATION

The recent experimental measurements by the author 21 have demonstrated

that for annual sea ice the velocity of longitudinal waves exhibits de-
pendence on the depth into the medium because of variations in density,
salinity, and temperature. From these data a shear wave velocity profile

1. was calculated which predicted a continuous decrease with depth.

Unfortunately, sufficient data do not exist to similarly predict the
depth dependence for attenuation. For this determination, the form of
both the elastic and viscous coefficients must be known. However, if a
near-elastic medium is assumed, it can be shown that for a Voigt solid

pr- W (26)
SI 2c2
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Therefore, provided the depth dependence of the viscosity (n) does not
decrease faster than C3 , the attenuation will increase with depth.

ACOUSTIC REFLECTIVITY AT THE ICE-WATER INTERFACE

In considering the feasibility of using acoustic techniques to measure
ice thickness, a major factor will be the amount of energy reflected from
the ice-water interface. For an acoustic wave incident on a boundary be-
tween two ideal media, the relative energy distribution calculation is
straightforward and is presented in detail in Appendix A. The resulting
equations were solved using average values for the density and the com-
pressional and transverse velocity of sea ice as determined in a previous
section of this report. The solution for the compressional and transverse
waves is shown in Figures 18 and 19, respectively.

Neglecting attenuation effects, this simple model indicates that at
normal or near normal incidence the most efficient method of acoustically
determining ice thickness would be through the implementation of the
transverse mode because of unit reflectivity at the interface. There are
at least two difficulties with this approach:

(a) The true velocity profile of the transverse wave is unknown.
It has, however, been predicted to be highly dependent upon
the amount of liquid brine present in the medium--the amount
varies as a function of temperature. Further, a very sharp
transition of the medium occurs in the lower few centimeters
of the ice, i.e., the skeleton structure. Therefore, without
a great deal more information, which is presently unavailable,
it is impossible to ascertain the acoustic impedance micmatch
at the interface and thus predict the reflected energy in any
given acoustic mode.

(b) An efficient method of introducing the transverse wave into
the medium has yet to be devised. The standard technique of
coupling shear wave generating transducers onto the surface
fails for the case of sea ice, principally because the saline
layer generated by the brine leaching processes precludes a
good bond between the transducer and the medium.

Several methods were attempted to introduce sufficient acoustic en-
orgy into annual sea ice to observe reflections from the interface. The
only successful technique, wherein an acoustic pulse is generated using
a low-level explosive charge, is shown in Figure 20. A slit is cut in
the ice a known distance from the explosive source to eliminate the direct
path to the sensor, a ].0-kHz onmidirectional hydrophone implanted in the
side of the slit. The explosion excites all of the acoustic modes, and
these, in general, propagate at different velocities. The signal received
at the sensor should therefore contain contributions from each mode that
are separated temporally according to their different velocities. Figures
21 and 22 show typical returns from this experiment. Because the direct
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path has been interrupted, the first arrival at the sensor is the compres-
sional wave echo from the interface and is indicated by arrow I in the
figures. The initial signal is followed by reverberation until the
arrival of the shear wave reflection denoted by arrow 2.*

EXPLOSIVE TO
SOURCE ELECTRON ICS

.i ..20. .g of .e .v .xp.. m.nt.

Correcting for delays in the oscilloscope triggering circuit and
averaging over all measurements, the shear wave velocity was 1746 rn/sec.
This value is 125 rn/sec lower than that predicted by the velocity calcu-
lations. However, there are two shear modes that can be excited, ver-
tical and horizontal, each of which can propagate at different speeds
because of the anisotropic nature of the medium. It is impossible to
determine which mode has been observed in the experiment, but it is be-
lieved that, because of the nature of the sound source, the horizontally
polarized mode is the principal contributor. The results of the in situ
tests are therefore not necessarily inconsistent with the predicted-

Svalues.
Figure 23 shows the result of a similar experiment performed on

summer sea ice. Even though this medium is quite different from annual

sea ice, the form of the acoustic echo from the interface is very simi-lar. The compressional and shear wave contributions are designated by
arrows 1 and 2, respectively.

There are two obvious differences in the structure of the return
echoes for summer and annual sea ice that can be correlated to differ-
buences in the medium. First, the acoustic returns in summer ice do not
dexhibit the reverberation observed for the annual ice. This indicates

that the medium is more homogeneous during the summer months, which, inlfact, it is because of the free flooded co ndsonrc S d, the well-
padefined return echoes, particularly for the shear wave, are indicative
tof an abrupt transition at the interface; i.e., the skeleton layer is
not well formed during the summer months.

*Becaiuse of triggering difficulties, TfO in Figures 21-2i doersnot
represent the initiation of the sound source.
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SSweep =0. 5 msec/div, Ainp 0.01 V/div
Ice depth = 1.5m
Source to receiver distance = 3.6 m

S~Figure 21. Typical return from pulse echo experiment in annual sea ice.
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1 2

'., Sweep = 0.5 msec/div, Amp - 0.005 V/div

Ice depth = 1.5 m
Source to receiver distance = 5 mFigure 21. Typical return from pulse echo experiment in annual sea ice.
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SA A

1 2

Sweep 1 msec/div, Amp = 1 V/div
I Ice depth = 2.286 M

Source to receiver distance = 2 m

,* Figure 23. Typical return from pulse echo experiment in awmner sea ice.

i Unfortunately, certain difficulties during the summer ice experiments
4. •did not allow a calculation of the trigger delay so that the average

velocities cannot be directly determined. However) assuming the compres-
sional velocity is 3840 m/sec, the transverse wave velocity is calculated
to be 1765 m/sec. Therefore, although it has been shown4 that the acous-
tic parameters exhibit some seasonal dependence, this effect has not:, necessarily been observed during the experiments reported here.

Although the experiments performed have not directly measured the
acoustic impedance mismatch, they have demonstrated that sufficient energy

I [ is reflected from the interface to monitor the thickness using acoustic
"pulse techniques, at least for annual and summer sea ice.

SEISMIC MEASUREMENTS
As discussed in the introduction, many seismic studies have been per-

* [formed to measure acoustic velocities in sea ice. Great significance has
been placed on the speed of the plate wave to determine the compressional
wave velocity, and the frequency of the air-coupled wave ' ,6

,33 to determine
* ice thickness. However, other acoustic modes such as the Lamb waves8 andSthe Rayleigh wave 3 could be as important for the determination of these

parameters as the plate or air-coupled wave. Some preliminary experimen-

tation was performed to bettor understand the mechanism of long-range
acoustic transmission parallel to the ice cover.

High frequency propagation, i.e., wavelengths much smaller than the
I •ice thickness, will not cont:ýibute to the energy observed at significant
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distances from the sound source, There are two reasons for this: (1)
The attenuation of the sound wave increases at least as the fourth power
of the inverse wavelength so that the energy is dissipate% very quickly
for the frequencies being discussed, and (2) the radical velocity profile
through the medium causes extensive refraction of the wave front. Using
the horizontal velocity proFile discussed in a previous section of this
report and the computer program RAY005 given in Appendix B, the refraction
was calculated for a sound source located en the surface, near mid-depth
and at the interface. The result of this calculation is shown in Figures
24-26. It is obvious from this representation that the only condition
under which appreciable energy will be transferred is for the source to
be located at mid-depth because of the sound channel at that location.
Even this condition may be unique because of the formation history of
the 1973 ice cover.

To examine the longer wavelength contributions to the transmitted
acoustic energy, the experiment illustrated in Figure 27 was performed.
A line array of geophones composed of eight elements (four sensing verti-
cal displacements and four sensing horizontal displacements) was located
on the ice such that each sensing station was a known distance from the
source of the acoustic disturbance (a small explosive charge). The re-
ceived signal at each of the geophones was recorded on an analytic
recorder for later laboratory analysis. Typical results of the horizon-
tally oriented array are displayed in Figure 28, Results for the verti-
cally oriented array are shown in Figure 29.

Although the ice surface was fairly rough, the geophones were lo-
cated as equidistantly as possible. Thus, in the representation used
in Figures 28 and 29 the velocity of the wavefronts is given by the
slope of the line connecting the arrival times of initial impulse on
the individual traces. For the horizontal geophone array, there were
two obvious wavefront arrivals, one travelling at 3050 m/sec and one at
1658 m/sec. Except for the air wave at the 17-meter geophone there is
no clear separation in the arrival times of other acoustic modes. This
could be caused by the long oscillation times and the close proximity of
the geophones, because on several shots there were signal interferences
that indicated the possible arrival of another acoustic mode. An example
is shown by the broken line on Figure 28. A best guess for this data
indicates that this mode has a, velocity of 1445 m/sec, which is very
close to the velocity of sound in water. Future experimentation with the
sensors located further from the sound source should separate this wave
front.

The intermediate velocity wave ha. boon previously reported by
Oliver, 3 who was ,mable to explain its origin. Given that CR is the
velocity of the Rayleigh wave and CT and CL are the velocities of the
transverse and longitudinal wave, respectively, Viktorov3 s shows that
the Rayleigh wave velocity can be determined fror. the equation

n 3 -8 + 8(3 -2ý 2 )n -16l 2) 80 , (27)

where
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(c2

Using the known values of the longitudinal velocity, density, and plate
velocity for ice, and the identities

C pl_-a2)
L2 (E '1-) (28)

c .

T 2p(l+a)

where p is the density, E is Young's modulus and a is Poisson's ratio, a
value of CT - 1763 m/sec was derived. This is in excellent agreement with
the reflectivity measurements discussed earlier. Equotion 27 was then
solved for the Rayleigh velocity for this medium and found to be 1677
m/sec, a value very near that observed for the intermediate speed wave.

SOREGEOPHONES 1

X- ICE SURFACE

Figur'e 2?. Diagram of seismic experiment.

Other evidence indicates that the observed disturbance is due to the
Rayleigh surface wave. It is known that this wave is propagated with an
elliptical particle motion that is unique to this particular mode. Thus,
the orientation of displacement sensors, such as geophones, is unimportant
in the detection of this wave. Examination of Figures 28 and 29 shows
that this disturbance is detected by both- the vertically and horizontally
oriented geophone arrays, while the plate wave excites only the horizon-
tally sensitive geophones. This indicates that the particle motion for
this mode is indeed elliptical. Finally, Bunney and Goodman"6 have shown
that the- Rayleigh wave, once excited, is the predominant mode of. energy
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transfer and propagates with very little attenuation, which is consistent
with the behavior of the observed wave.

To fully interpret the results of the seismic experiment, the theory
of Bunney and Goodman'° has been extended to allow excitations in a plate
bounded by air on one side and water on the other (see Appendix A). The
predicted velocity dispersion for the case of sea ice, using the acoustic
parameters :?reviously discussed in this report, is shown in Figure 30.
There are two surface wave modes predicted: (1) the symmetric Lamb wave,
which for small thickness-to-wavelength ratios (k h<l) is indistinguish-
able from the plate wave (Cp) and appears to asymýtotically approach the
shear wave velocity (CT) as the layer thickness increases, and (2) .he
Rayleigh wave, or the antisymmetric Lamb wave, which appears to propagate
near the Rayleigh wave velocity. These two waves were the principal
excitations observed during the experiment.

CONCLUSIONS AND RECOMMENDATIONS

The ability to efficiently and accurately determine the thickness
"of sea ice using acoustic pulse echo techniques is dependent on several
factors. The more critical problems, those associated with the velocity
and attenuation of the acoustic wave in the medium and with the acoustic
impedance mismatch at the ice-water interface, have been investigated in
the laboratory and in situ for both summer and annual sea ice. The re-
sults of these measurements indicate that, if sufficient coupling between
the sound source and the medium can be obtained, and if the acoustic fre-
quency is maintained such that the wavelength is long compared to the

S i scattering centers in the medium, the determination of ice thickness using
pulse echo methods is entirely feasible. This technique was demonstrated
in situ.

P•r thicknesses up to 2.5 meters (the maximum depth available during
the field tests) reflections of both the compressional and transverse
waves were observed. Although the compressional wave velocity measure-
ments exhibited radical fine structure with depth into the medium, the
average values varied by lss than 1.5$. This is indicative of the ac-
curacy with which the ice thickness can be measured. Either the compres-
sional or the transverse wave can be used for the measurements. Because
of the large acoustic impedance mismatch for the shear wave at the ice-
water boundary, the energy returned is several decibels greater than that
for the compressional wave. This advantage may be negated, however, by
the relative difficulty in generating this acoustic mode.

The small explosive charges used as sound sources during these experi-
ments worked very well for generating all of the acoustic modes, including
the shear wave. Because of the time required to set up the apparatus,
this technique would be very inefficient for surveying large areas; thus
other methods of coupling energy into sea ice should be studied.
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Hunkins 4 has reported seasonal variations in both the compressional
and shear wave velocities approaching 20%. We did not obtain sufficient
reliable data during these tests to verify this result. Further, the

* theory shows that, for high frequencies, scattering processes are the
largest contributor to the attenuation of the sound wave in the medium.
For the annual ice observed, the attenuation becomes significant for fre-
quencies above approximately 50 kliz and is dependent on the size of the
scattering centers, in this case the brine cells. Because the size of
these cells can have a large seasonal variation, a dramatic effect may be
observed in the attenuation of sound in the medium. It is recommended
that tests be conducted to measure the seasonal dependence of the acoustic
parameters in the medium.

The empirical relationships developed from the experimental data for
predicting the depth dependence of the acoustic parameters (such as the
transverse wave velocity) appear to become invalid near the transition
layer between the ice and seawater. Because a reliable prediction of the
relative amount of energy each mode reflects from this interface is de-
pendent on a thorough understanding of the acoustic properties of this
transition layer, it is reconmended that a program be initiated to study
the physics of this "skeleton layer."

Preliminary experiments have shown that energy can be propagated
parallel to the surface of the ice canopy in both the Rayleigh and Lamb
modes. Theoretical results have shown that the Lamb waves are highly dis-
persive with the thickness of the layer. The introduction of pure tone
acoustic waves into the media may well provide first order approximations
to the average ice thickness over significant ranges. It is recommended
that this technique receive further attention.
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I. THEORY OF SOUND WAVE PROPAGATION VELOCITY AND ATTENUATION IN VISCO-
ELASTIC MEDIA

A. Long Wavelength Solution

1. Derivation of the General Equations for Wavenwnbez and
Attenuation in an Iaotropia Medium

For wavelengths that are long compared to the size of
the scattering centers, scattering theory can be ignored in
deriving the formulation of acoustic velocity and attenuation.
The introduction of viscoelasticity is accomplished by the
replacement of the Lame' constants A and M in the elastic
stress-strain relations by the first order differential
operators

M +

A(Al)

where the unprimed terms are the elastic and the primed terms
the viscous contributions.

Consider an acoustic shear wave* moving in the positive
(downward) x-direction. The displacement potential is given
by

Aei(t - ax) (A2)

where w is the circular frequency, t is the time, and a is the
complex wavenumber. The potential obeys the wave equation

P . M V2 'p,(A3)
at

where p is the density of the medium. Substitution of Eqs. Al
and A2 yields

a t2  atr

•-4iederivation for compressional wave propagation is similar to
that presented here for shear waves, the difference being the
"introduction of A+2M in the wave equation rather than the shear
modulus M. The displacement potential must, of course, be
"associated with the compressional rather than the shear wave.
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1W- 2 • • ) (AS)
For a dissipative medium,

c - k - iT, (A6)

where k is the running v6-ator (w/c) and T is the attenuation.
Making this substitution and separating real and imaginary
components yield the simultaneous equations

PW2 = 1(k
2 _ T2 ) + 2p',kT (A7)

0 = wp(k 2 - Tz) -2

Setting

these equations have the solution

"-C + ROk2 -1)

(A8)
-k2 W 2" -+- + 1R2,,

where both pa and R may be frequency dependent.

2. Mathematicaal' Mlodels of Sea Ice

Historically, there have been four different rheological
models used to represent sea ice. These models relate the
stress tensor as a function of density, strain and time rate
of strain. Only two models will be discussed here, that of
Maxwell and that of Voigt. The linear standard model and the
four-element model are combinations of these two, and their
introduction would only lead to undue complexity.

a. The Maxwell Model"S

Consider the mechanical representation shown in
Figure Al, where the ice is represented by a spring denot-
ing the elastic element (Em) in series with a dashpot
denoting the viscous element (Tm). Both Em and nm are

V frequency independent. Maxwell defined the stress-strain
relationship for this viscoelastic solid as
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where a is the stress, S is the strain and 6S is the
relaxation time of the material. If the wave equation
(Eq. A3) is to be applicable, Hooke's law states that
the relationship between stress and strain must be of
the form

o 2MUS, (AlO)

which may be accomplished by writing M as an operator.,

I1+ 1

or, in terms of the elastic and viscous constants of
Figure Al,

E

M m

Em Fiume Al. Maxwe~te rneohanixzl
reprosentation of

I L ~vi~aooe~atic so Zda.

Thus, substituting into Eq. AlO and simplifying give

L ~d Emd(A)
dt M dt

-I'



Now, for periodic stresses, both a and S have time depen- 1
"dence of the form eiwt. Equation A12 can then be reduced
to

2E ( 
I

1. m S . (A15)

It was assumed earlier that

M u • + iW•'.

Therefore, separating real and imaginary parts of Eq. A13,

E W2

(E)2-W2

m

and (A14)

E 2/Tj

A m M

so that

EI
R __m (AIS)

The solution given by Eq. A8 can then be immediately
written as

5
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T~=. ~ 1 i+(E) i
"E E 2 A6

+(A16)1 1
b. TLe Voigt Model 2 9

Figure A2 shows the mechanical representation of the
Voigt Model. In this configoration, a spring representing
the elasticity (Ev) is in parallel with a dashpot repre-
senting the viscous term (9v). As in the previous model,
both Ev and nv are assumed to be frequency independent.
The stress-strain relationship is given by

r =(Er + i" S) • CA17)
V v v dt v

E repr7 'peaentation of
ViacoeLotic soclids.

Using techniques and arguments similar to those for the
Maxwell model above, it can be shown that the solutions fur
the Voigt model are given by the equations

kEl /X \21
k 2 . 2 ., J 1+ / n 2

(AIS)

1* -
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B. Extension of the Theory to Include Anisotropy

Thus far in the theory, only the solutions for an isotropic
medium have been discussed. It is known, however, that for many
materials, including naturally occurring ice, the acoustic properties
exhibit a dependence on the direction of the propagation of the wave
relative to the growth axis, i.e., the media ore anisotropic. A
method of including anisotropy in the theory follows.

Stresses and strains in the medium can be specified in terms
of the resolved displacements in a unit cube of the material. 38

There are six components of stress and six of strain, which can be
written in terms of tensor notation as

C ij and Sij

where ij denotes the x-, y-, z- or 1-, 2-, 3-component of the stress
or strain. The force on a unit cube in the ith direction is given by

Da..
Fi . U. dxdydz (ij . 1,2,3) , (A19)

dX-

where repeated indices indicate a summation. The tensor strains are
defined by

1 u1  au.
ii 2(ax ax.i

where the u's are the displacements of the body along the coordinate

direction xj.

Utilizing the reduced tensor convention for the stresses

a I W a11; a2 W a2 2, a3 n a 33

a0 4 a23 a 32; 05 L113  a316; a612  '21

"and, similarly, for the strains

S 1 S1I; S 2 W S22; S3  S3 3

11
.S S 2 3 -S 3 2 ; 32S 5 m 1 3 uS 3 1  2S 6 S 12 2

the generalized Hooke's law can then be written

52
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ti " Cij Sj (ij 1,2,...6) (A21)

and it can be shown that for the elastic constants

cij = cji. (A22)

"There are a maximum of 21 elastic constants for the most unsymmetri-
cal crystal. As the degree of symmetry increases, the number of
elastic constants decreases until there are only two for an isotropic
medium. These are the Lame' constants X and ý, where

1 + 2v " C 22 " C33'

) "C 12 -C 1 3 - C2 3  C21  C3 1 =C 3 2 , (A23)

U " C44 55 C66 ,

and all other constants are zero.

"To include viscosity in this theory, each of the elastic con-
stants is replaced by a differential operator of the proper form for

*rthe model being considered. Therefore, a complete solution will re-
* quire the determination of two or more elastic and viscous constants

for each operator used.

C. Short Wavelength Solution

For wavelengths on the order of or shorter than the size of the
scattering centers in the medium, the energy loss due to scattering
"must be considered.

Assume a plane wave propagating through an isotropic solid to
be scattered by a sphere of radius "a." Both the wave and the scat-
terer are characterized by their longitudinal (kl and k2) and shear
(K1 and K2) wavenumbers. The energy scattered out of the sound beam
by the sphere is equal to the time rate at which energy is being car-
ried away across a spherical surface concentric with the scatterer
and of radius "b" > "a." The scattered energy is then written.4mathematically as

Esctee au/ gx + au +aza dA (A24)
scatt ered ff t TEscattered

A

where axr, cyr, and azr are the complex stress components acting in
the three rectangular axei on a surface normal to the radius vector
r and where ux, uy,, and uz are~the complex displacements in the same
three axes. Since the final expression for the scattered energy
must be real, and both the a's and u's are generally complex, only
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the real part of Eq. A24 will be taken. Rewriting Eq. A24 inspherical coordinates and determining the real part gives

E cItI= i rr urr +ar ue +a UziEscattered _-2 u0+•rU+z

r-b
(A25)

[ ur + a U a Uz 2TbP sinedeS"Ora+scattered

wave

'The displacements of the sound waves can, in general, be written

,• ,,as

grad • + curl 1, (A26)

where ý is the scalar potential and ý is the vector potential (0, 0,
ip). The displacements for the incident, scattered and internal* waves
can be written in terms of Eq. A26 with the incident wave potentials

Oin - I 1m jm(klr) Pm(cose)
Mao

(A27)

"• i •in = Jz im(K 1T) p,(cOse)
MI0

the scattered wave potentials

Am (k r) P (Cosa)Mao
CA28)

Ps " oBm h (Klr) PM(cosO)

and the internal wave potentials

ii 0
""q I• Cm j m(k 2 r) PM(cosa)

muo

*the waves inside the scattering sphere
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where jm hm and pm are the spherical Bessel function, the spherical
Hankel function and the Legendre polynomials,"7 respectively. The
stress and displacement components in terms of the potentials are 3 9

r ar r

+ + 1 + (A30)
K r r r- rj

and

U 4- [A31

U 0 ,

with

sin n-(s~ (A32)

Applying Eqs. A28, A30, and A31 to Eq. A25 yields the scattered
energrt:

Escattered " 4mrp W ~ jA MBI + (A33)
1 12M-lW

The scattering cross section is defined as the ratio of the
1. scattered energy to the total .energy, or

Y - (A34)" total

For an incident plane compressional wave with amplitude coefficients

13 U 1 (-i)m~1 C2m+l)

L and

I JuM 0

SS

'. -
. . . . . . . . . . .,L.•; ... •.. .. ,, , ,i• :. ,
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the total energy in the absence of a scatterer is

EtotaI l CA35)

and the scattering cross section is

*Yshear' 7 J 1 2m + MM l) _ lBm 12  (A36)

The final solution depends on the amplitudes Am and. Bm which must

be evaluated in terms of the boundary conditions defining the stress
and displacement at the scattering sphere surface.

The scattering cross section for a shear wave incident on a
spherical scatterer is

cA2 1  2 + m(m+l)IBm1 2  (A37)
M=O

where again the boundary conditions are solved for the Am's and BmIs.
I The solution of this equation using the best known values for the

parameters shows that, except in the region where the ratio of the
circumference to the wavelength is approximately 1:1, the scattering
cross section obeys the relationship

[ a 2a dB/cm2

shear 4.151 x 10- + 2.35 x 10" v' a2'

(A38)V 4 a 6' C 83I '.LO. -~ 7 '74
CO~ 2.163 xl10 + 0O.017 v a'

where y is the scattering cross section, a is the scattering radius,
f and V is the frequency in megahertz.

To determine the effect of scattering on the acoustic attenua-
tion of sea ice, the distribution of the scatterers in size and space
must be considered.

£
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II. THEORY OF ACOUSTIC REFLECTION AND TRANSMISSION AT THE ICE-WATER
INTERPACE

The equations to be developed here are for isotropic, homogeneous
media whoso extent is very much larger than the acoustic wavelength.
Complexities such as the anisotropic nature and the viscoelastic proper-
ties of sea ice are not considered, since much of this theory is already
complete.

Elementary tests on acoustics, such as Lindsay, 45 show that for an
acoustic wave striking normal to an interface such as that shown in
Figure A3 (where the p's are the densities, the A's are amplitudes, and
the C's are the velocities of the acoustic wave in the media) the relative
amplitude of the reflected wave is given by

AR I-Z

A. 1 ÷Z 'C39)

where Z (o 2C2 )/(PICl) the acoustic impedance of the boundary. The
above model shows, in a very simplified way, that the acoustic energy
reflected is wholly dependent upon the impedance mismatch of the interface.

(I) (1-)

Ai Ar -

AR

Figure A3. Acouatia wave reflection and tranamiesion at an int4rface for
' Ii a normal incident wave.

For the case of an incident wave not normal to the boundary, consider
the diagram of Figure A4, where medium I (the ice) is assumed to be iso-
tropic and homogeneous and medium II (the water) is assumed to be an ideal
fluid. Then the potential functions are given by

F'

, • . - • , i,. . . . . . .

I
• , , , m • m m I'



ei(wt--y) C-6J L• e + BeCL]

o = ei(wt'oy) 60 i + De

where

I incident compressional wave

0 incident transverse wave

k0 sinG0 - kL SiXIOL kT sineT

a k cosO
'0 0 0

•,T kT CoSaT

aL k kL cosOL

s 1  k sino]

L L s i n - 'I k L0

ko

.(W CE)

(WATER)

x

gtzwa A4. Acoustic wave refZection and tranamiesion at an intarface for

non-norInal inaideno.
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At the boundary, x m 0, the normal displacement and pressure are continuous
and the shear stress vanishes. That is,

I • uI
U UU

x x

0 O = 0 (A41)

. I c 1  0"I

where

u- grad 0 curl

- (0, 0, )

uA..V 2 4+ 2pS.°ij = ij v +2sij

SI +u u

and i and j denote direction. Solving the boundary conditions, the ampli-
tude of the reflected compressional wave is given by the expression:

2) ( o2ITL . IT 1

f l The amplitude of the reflected transverse wave is given by
W" k 2 Fs,

Blu . (A43)

a ,L j. +P 2as= L

a _ 59

0 ý4_0ý P
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Finally, the amplitude of the transmitted compressional wave is

2 =P==L 4 -P
P0  L P % (2-a2)

E = (A44)

From ~ (442) [l 12 ~

From these equations, the energy distribution relative to that of the
impinging wave can then be calculated as a function of incident angle.
The results of these calculations, using the best known values of the
necessary parameters, are shown in Figures 18 and 19 of the text.

III. ENERGY OF THE ACOUSTICALLY EXCITED SURFACE WAVES ON A PLATE

Consider a plane wave travelling in an ideal fluid striking a plate
of thickness (h) at an angle 00. The following mathematical development
calculates the energy per unit length per second flowing in the y-direction
(see Figure AS), where it is assumed that the plate is bounded on each
side by a (but not necessarily the same) fluid. The problem is to deter-
mine if enhancement occurs near the Rayleigh and Lamb wave excitation
angles.

INCIDENT
PLANE WAVE

ly h

L

Figure A5. So5hontio representation of the problem.
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I

If the displacement potentials are 4 and i, then the displacement
u is

Uugradc +curl . , (A4S)

where the potential of an incoming wave with angular frequency W, wave
number ko and unit amplitude is

,i = ei(wt-k sin 0 y-ko cos 0 x) (A46)

the potential of the reflected wave is

e i(wt- k sine0 y+k cose x) (A47)

the potential cfL the transmitted wave is

ei(wt - k Fsin eF y- kF Cos GF x), (A48)

and the potentials 4 and 4 in the elastic medium are

ai ( ei - k LsinL 6 L Be-i L sLX ÷ocejkL cOseLxj =Co+s e÷÷ (A49)

S= (00.m4) (ASO)

0 e i(wt-k T sin 6T Y) [De-ikTCos 0T x + Ee i kTCosTI a T (A51)

The intensity of the wave in the ith direction is given by3 7

I .I -Lu S +uLS) + 2p(uaSi + Sial , (A52)• i a i CL.

where

!Ij •, ax .Tx

the Lame' constants are X and p, and repeated indices denote summation.

,1
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According to Snell's law

k sino , k sine = k sino kpsinF - CA )0 L L T nT kFsnP,(A)

and letting

aL Lu kL cos 0 L =kL 1 sin2 0L

O T co T kT o(A54)

aF -- kF cos% mF-kF 1 .(i)sin2 0

a = k cos 0
a 0 O C

the intensities in the x- and y-direction can be given by

41x = (.
pW L CL + aL 0 04 +) + (aL aL) Colo+* - (A•,)

+ Ca + CIT) CNO+ - Y + (+CTr - aT) NO÷+ - O+)

and

I+ .. (82 k 2  
-T;s )

+... ~k2 ILL +4 y + 2

* (82-k *•i V* * *1p+

-_ (28 4) •LL¢¢,€€)÷•••• ÷+

3 2 L÷LTT

"" k T T *

i+
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where the asterisk denotes the complex conjugate, and both aL and CT are
either purely real or purely imaginary depending upon whether the incident
angle is less than or greater than the compressional or 'transverse Snell's
law critical angle. To evaluate the wave amplitude coefficients A...F, we
have applied the well-known boundary conditions of continuity of displace-
ment and pressure across the interfaces at xmo and x=h, and the shear
stress must vanish because a fluid medium on each side of the layer has
been assumed. Mathematically the boundary conditions can be represented
as.

Sa

X ux

0 W a (XUO)

and a•. =0ox(X0

axy 0

where

a = XV20 a . + 2pS ..

) C(A57)

and 6.. is the Kronecker delta.

UF

Solution of these boundary conditions results in'six simultaneous
equations, in which the unknowns are the desired amplitudes. Letting

A.. Al ... A6, the solution can be put in the form

2a.
A. 1i 1_ i S

(A59)
2a.
D ' (1) eF 6
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where
w- 0 (si 2 s34 C s32s

r s 12 s32 s3 4 (1-cos Lh - 12 3 32

"- C (s12 s24- S 2 2 ) sin aLh sin Th

*1 (S 1 2 s 24 -s22) (l L- ))Ls1 2 s534 flhcST1

+ s 3 2 sin a•h cos caLh

22 a 12 •(I - cos aLh cos oLh) -2 -2 p s12 -34 LF s32

S ( (s12 s24- S22) sinaLhsinaTh

ao~ (s s s sna2  o ~

+ i [ofS 32 +- 12 24 - 22

- £1;S] 2 £34 COS 0Th iflcL Lh

1 PO (1-cos a~ il Lh

4 Y a3 = " P s12 s3 4  L CO h +

"0 (s12 s24" s22) sin aLh sin aTh

F (s (s4 s2 ]sn ýhcsa+÷ i 1 a 2 2 2

p 0L
Ii o

£F
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0- -p-0
' '1 2 {!. S3 2 • 1c -os • Lh Cos c.F - 12 -34

ao0

÷ (s 2 s3 - • s l2s4 s sin ah h si aTh
- F (S s12 24 s 22s LTh

i -342 s -s22 CS si -~ sn si hcsh~

.- = cc F 1 2 2 4 2 Lh

PO 
[P

0 S(o a h si 
COS

1 2 
L

c .h cP
CL ( 1 524-Lh2)sin hsnaTh~

2a 12l -3 + (1 c s intLh cos ac) ft2s 2  3

12 2424 22

+ A. .2 s CS s h2) sin a~hco
12 3 4 LF 12 2

225 3 34 Lh32 (%Th

I D 2- 2 s 53 s3  -1 cos cosh - s2s2 2
PF 12 (1 32Co Lh) j-p 1s2  3~4 + 3.,

(s 12 s 24 -s2 2) sin aLh sin m~h

*~12 ~24 22) a ) OF 12 S3 4 si Lh oc.

I.2's 3  sin cs.~h cos cLnlI
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and

2aLt
S L s a./a I s~ S~-/a'

12 2 , s22 L 0 24 0

2 I
s34 ..... ...2

Po\ ) okT

These equations have been solved using Program LAYER in Appendix B for
the case of sea ice bounded on one side by water and on the opposite side
by air. Although the results of this calucation predict anomalies that
remain to be interpreted, the dispersion of the Lamb waves can be extracted
from the calculation and are shown in Figure 30 of the text.

6
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1 APPENDIX B - COMPUTER PROGRAMS
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PROGRAM RAYOO5(INPUTOUTPUT,TAPE5=INPUTTAPE~=0UTPUTTAPE99)
C RAY TRACING PROGRANAPPLIEQ PHYSICS LABORATORY

C READ IN TABLE OF VELUCITIES FOR DECREASING DEPTHS
DIMENSION VELOCC5OLJ) ,I(500),OEPTH(500).SHIP(33,OATE(3)
DATA TESTiqPl/l.E-6,.J.i'.5926535d/
CALL PLOTS
REAU(5*201) NQPLT

201 FORMAT(151
702 REAO(5,896) SiIIPOATE

896 FORMATU3AiG,3Ai0J
DO 3 M1=19500
READ(5,1) DEPTH(M),VELUC(M) ,ID(M)

£ FORMAT (2F20.i,lia
IF tID(MI-9)3,'.,.

4 IIrM-i.
GO TO 5

3 CONTINUE
5 READ (5,6) USOURCoSVEL#RMAX ,UELTAAfANGQMA(,ANGMIN
6 FORMAT (3SFlQ.l,.FlU.5)

WRITEC6t60) SHIP,UATE
60 FORMAT (IHI/IN 34X,20H RAY TRACING PROCGRAM/14 3lXi27H APPLIED PHYi

lDS LAt3DRATORY,/.i JLJx,3Ai0/1H 30X.3AiO///)
WRITEibtI62) (0EPTH(M) ,VELOCHmj M~ifII3

162 FOJRMAT (7H 0EPTHXFiO.1ipt0X4OH i/ELQCITY=FI3.4)
WRITE46tiO9) SVELiRHAX ,DELTAAqANGMAX,AkGMIN

109 FORMAT (liH 2Fi0,l,JFlG.3/

C READ IN THE SCALE
C

C

IF(TO).EQ.Q.) TOa DEPTH(UI)
SUM a 0.0
UD 130 L1,9II
IF(DEPTH(L).LT.UZ;UURQ) GO TO 130
IF(UEPTH(L).CE.TO)GO TO 110
SUM1(VELOC(LitVELUC(L41J)/Z.*(ULPTH(L+1)-OEPTH(LI) 4SUN
GD TO 130

1L0 CONTINUE
IF(0EPTH(L).EQ.TC) GO TO 125
DEL =DEPTH(L)-TO
YIN a (VELUC(L-1)-IjELOCIL))/(DEt~rH(L-1)-O~EPTH(L)I OEL
SUM SUM' (VELUC(L)-VIN/2.) * DEL

125 CONTINUE
VAV . SUM /(ID-OSOURC)
XF4OIM.GT.O.5) 0O TO 12?
WRITE(6pi261 O'SOURCRTOVAV

126 FORMAT (1110925Hi AVERAGE VELOCITY BETWEEN ,F8.294H ANO,FS.2,
x 6H FEET I5#F8a291U1I FEET/SEC //e28H ALL DISTANCES ARE IN FEET

07 X /IHI)
GO TO 135

121 CONTINUE
, 0ý RITE(GPi28) OSOLIRC#T(J1VAV128 FORMAT (IH0,25H AVERAGE VELOCITY BETWEEN ,F8.2v4H ANOFd*2,IOH MET

XERS IS ,F8.2,i~rlIIE:TERS/SEC //28H ALL DISTANCES ARE IN METERS
X /#i 1)

GO TO 135
130 CONTINUE
135 CONTINUE

C
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C PLUT AXIS

PLOTY= (YI1AX-YMINP/DY
IFlOIM*LT,0o5.) G~O TU 4.00

* CALL AXISiO.090.0 ,24H 1 25tsvi
* i3.G,VMIN,DV,i0.)

& ~~CALL AXIS (Go0.0PLUTYoI3HOEPTH (METER),913SY990.GtYMAXOYv 10.)
CALL AXIS(0*0#PLUTy,9L.HVCLUCITY PROFI.LE (M/SEC)P-259SVO

CALL AXIS(SVJ+l.,PL0TYvl3HRANGE (M4ETER) ,-13#SX9,.0,XDIINOXpl0*)
CALL AXIS(5V,-i*9PLOTY,t3M0EPTH (tIETER) ,13,SY,90O,~YMAXOY,10i.)
CALL AXISCSV.I.,0.0,±3H t 12,SXj0.0#XI4INv0Xv10.1

1. GO TO '.10

0.a CONTINUE
CALL AXIS(0*0,0*0 25H1 25PSV*

1.0.0, VIN, OV, I0e)
CALL AXIS (D09DPLorY,13HOEPTHr (FEET) ,i3p5Y00*0#YMAXvUY, 10.)
CALL AXIS(0.0,PLQTY,2~5HVELOCITY PRUFILE (FT/SECh9-25,SVP
1QG90VMINOV,10o)
CALL AXIS(SVt+i*,0.8,13H , 2,si),0.0,XMINfOxL0.)
CALL AXlSSV~.1,PLQTY,l3H0EPrH (FEET) v13tSYvea0,*sYMAX90via.)
CALL AXIS(SV~i.,iPLOTYg±3HRANGE (FEET) t-l3iSXq0.0,XMINv0Xt10*)

S4.10 CONTINUE
C
C WRITE HEAUING
C

PL0TX= (VEL0C (i) -VMIN)/I'y
PLUTY= (-DEPTH(I)-YMIN) /0Y
CALL PLOT(PLOTX,PLOTY131
00 700 INi.,1II
PLUVXm(VELOCf IN)-Vr4IN)/OV
PLOTY=(-0EPTl( INI)-Y'IIN)/OY

700 CALL PLOT(PLQTXsFLOTYs~l
* NOPLT=NOPLT-1

CALL PLOTCSV4-i..,UC,-3)
PLOTY= (YMAX-YMIN)/UY
PLOT YPL QTY .6
PLCJVX=PLOTY- .4

-' CALL SYMBOL46.2s,PLOrY ,a.±4,SHIP ,0.0,30)
CALL SYMBOL(6.25,PLOTX ,0*l4,vATE 9060%30)
PLUTSYz(-0S0URC-YMIN)/VY
(10 170 I±,flI

1±IF lUEPTH(I)-fVSUURCl7Gi7Ud71±70
11ISOUiRC=I

GO TO M7
VC0 CONTINUE

WRITE (6,-202)
202 FORMAT(SX,52HUEPTH OF SOURCE HAS NOT BEEN INULUDEO IN YOUR TABLE

STOP
172 K=ISOURC

ATHETAZANGMA,(
24 THETAJ=ATHETA-PI/1.80.

ANGLE9vADS (SIN (THETAJ))

IF(ANGMIN-ATHETA-TEStiI9,99200
9 WRITE(6,7) OEPTHIISOURC),ATHETA
? FOR~MAT (14MHOSOURGE DEPTHsF8.20 3Xti3HSOU)RCE ANGLE=F&.2v8H OEG

lREESh/4X5HPOXNT5X 7HRANGE 3X1.0HTIME (SEC)6Xi1QiOEPTH /J,/)
CALL PLOT(Go0,PLOTSY,31

10 RaG.

161 Tx0*

IPOINral
* r *11 RL=COS (THETAJ)/VhELOC(ISOURC)

12 11F tIP-L)L3,14,1,3
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14 HOLO=ABS (THETAJ)
IF (HOLU-(1.0E-6))33ot821l821

821. IF (THETAJ)i.B,330,500
00IsISOURC -i

GO TO 13
330 J=ISOURC-1

N I SO URC
AHIGH=(VELUC(Ji-VELUC(NJ)/A,35 (OEPTi4(Jl-OEPT~itN))
J=ISUURC i.
ALOW =CVEL.OG(JJ-VELUC(NJl/A8S (OEPTH(J)-UEPTH(N))
PLOTX=RMAX/D3X

332 IF (AHIGH)333p331p±50
333 IIlSOURC-1

IZE.RO=l
GO To 13

±50 IF (ALOW3i51,±52 1 153
151 IZERO=3

I=XSUURC4I
GO TO 13

153 IZEROxý
GO TO 22

152 WRITE(Gs334)[1334 FURHAT (55110 RAY TRAVELS HORIZONTALLY TO NEXT PROFILE
1//I)
IZZRO=3

CALL PLO'f(PLOTX#PLQrSYs2)

33L WRITE(6,334)
CALL PLOT(PLUTX,PLOTSYs2)
IF (ALOW)335t153,153

335 WRITF-46,336)
336 FORMAT (64H-OZERG GRADIENT ABOVENEGATIVE GRAOIENT BELOWoiAY ALSO 3

LENDS OQWN///)'1 CALL PLOT(a.0,PLUTSY,.3)
GO To 151

16 I=ISOURC+i
1.3 IF (1)17,18917
it IF (11-1119920020
Is WRIrE(6,21)

* 21 FORMAT (29H1 RAY GOES ABOVE MINIMUM DEPTH//)
GOU TO 22

23 FORMAT (29H1 RAY GOES BELOW M4AXIMUM DEPT'H//)
1,22 IPsI

* I ATMETAzATHETA-OELTAA
ANGLEB=ASS (SIN (THETAJ))
KwISOURC

* IZER~x3

GO TO 24I

25 IF(VL*LE.1e) ANGLEA=5QRT(l.-VL--2$
26 Au~iVELOCiI)-VELLO(KflA8S (OEPTHII)-OEPTH(K))
27 IF (A)28,29,28
28 IF (VL±.e)30,30,31
31 ANGLEA=Q.

K INxi

GO TO 32I
32 0ELTAR=(ANGiLE8-ANGLEAl/A/RL
33 (JELTATzALUG((1.GANGLEJ)i(i.-ANGLEB)*(1.-ANGLEA)d(1.tANGLý-A))/Z./A

IF 4IN-1)37,34,37

UxD4ABS (T-,EPTH(I)-OEF'TH(K))I
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36 IF (I-K)38,200939
39 0UOOEP7H(K)+O

I NEXTr= K-1
GO TO 4.1

38 [JOmiEP7H (K) -0
INLXT=Kti

41 R=R4ABS (UELTAR)
TxT4-AaS (DELTATI
PLUTX=R/Ox
PLOTY=(-U0-Yt4INI /UY
CALL PLOrCPLOTXPLOTY,21

.1.IF(AFHETA.EQ.-6.oANU.PLOTY.-LT.-2.s) CALL SYM8QL(PLUTXvPLOrY,,0l5v

WRIUTE(642) IPOINT,RqrOO
42 FORMAT (5XI3,5XFT.1,5XFd.5,SXF8.2)
43 IF (IN-1)44,45,4'.
4S RzIk4AtS (LIELTAR)

T=T.At3S (OELrAT)
LPOINTuIPOIN7+1
ImISA VE

GO TO 46
*37 R=R+A8S (DELTAk)

TuT*ABS COELTAT)
46 WRITE(6,42) IPOINTsRTtUEPTHCX)

PLQT XR/J~X
PL0TY=(-0EPTH(l)-YMIN)/OY

CALL PLOT(PLUTXoPLOTY#2)
LF(ATHETA.EQ.-6..ANLJ.PLOTY.LT.-2.) CALL SYMBOL(PLOTXIPLUTY,,015,

114,0 o, -2)
GO TO 43

* 29 DELTA1zAJS (OEPTH4(l)-UEPrH(K))*VL/ANGLEA
48 OELTAT=ABS (aJEPTH(I)-UEPTH(K))/VELOCtI)/ANGLEA

INuJ
GO TO 37

44 IF (IN-2)49,5U,49
49 IF (I-K)53,200,52
53 K=I

IMI-1
GO To 54.

1.52 KaI

54 IPUINT=IPOINT+i( ANGLEdmANGLEA
I. GO TO 55

50 KxISAVE
IPOINTsIPOINT~i

41 ANGLEL3=AaS (ANGLEB)
ImINEXT

55 IF (RMAX-R)56,57,57
56 IF (IZERO-0137vi3d9L37
137 WRITE(6*6'i)L 611 FORNAT 128H RANGE EXC~EUS MAXIMU14 RANGE///)

GO To 22
57 IP=2( GO TO 12
138 IF (ALOW)139,i52,153
139 WRITE (, 40O)
140 FORMAT (54H~ NEGATIVE GRAUIENT BELOW AND ABOVEoRAY ALSO BENDS DOWN/

I=ISOURC~i
I ZERO=3
1P=2
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ANGLE=THETAJ4 57. 29578
ANGLE8=ASS (SIN (THETAJ))
KaISOURC
WRITE(6,7) DEPTH(ISOURC)sANGLE
Rro.
GO TO 161

zoo FINAL=SX4iG.O
CALL PLOT(FINALo.0,-3)
NOPLT = NOPLT-1
IF(NOPLT°NE.O) GO TO 702
CALL PLOT(O.,O.,999)
STOP
ENO

PROGRAM SSCTR (INPUT,OUTPUTTAPE5=INPUT TAPE6zOUTPUT)
C THIS PROGRAM CALCULATES THE SCATTERING CROSS SECTION TIMES THE
C FREQUENCY SQUAREO. THE VALUE IS CALCULATED FOR A-SHEAR PLANE
C WAVE IN A SOLID STRIKING A FLUIO FILLED SPHERE. THE CASE OF A
C COMPRESSIONAL WAVE STRIKING THE SPHERE IS ALSO CALCULATED. THE
C VALUE IS CALCULATEU AS A FUNCTION OF THE UIMENSIONLESS PARAMETER
C KA WHERE K=2*PI'FREQ/UELOCITY ANO A IS THE SPHERE RADIUS.
c THE CALCULATION IS MADE IN THE C.G.S.SYSTEM. THE SCATTERING
C CROSS SECTION HA4 UNITS OF OU-CM**2. CSi IS THE SHEAR VELOCITY
C AND CLi IS THE COMPRESSIONAL VELOCITY IN THE SOLID. CL2 IS THE

• C COMPRESSIONAL VELOCITY IN THE SCATTERER. RHO IS THE RATIO OF THE
C DENSITY OF THL SPHERE 10 THE DENSITY OF THE SOLID.

REAO(S,49) CSIPCL1,CL2oRHO
49 FORMAT(3F8.0,F6.3)

WRITE(6, 51i
51 FORMAT(42H KA GAMMASHEAR GA'4HAICOMP)
£ REAO(5,50) AKA
50 FORNAT(F7.2)

IFIEOFS) 7,8
8 CONTINUE
PI3. 14i592b54

C FIRST THE SHEAR SCATTERING IS CALCULATED.
•BKSL=AKA
BKLi=aKSl*CSI/CLI
8KL2=BKSI*CSI/CL2
SIMRCS1/ (2.*PI)

C IF CIlzO. THEN A SHEAR WAVE IS INCIDENT.
CIHzU.
CALL COEF(8KSI,,KLLIBKL2 SIMHC!MR1o3 GAMAS)
GAKASmGAMAS#8KSl

C GAMAS IS THE SHEAR SCATTERING GROSS SECTION*FREQ**Z.
c NOW THE COMPRE.SLONAL SCATTERING 15 CALCULATED.

aKL1 AKA
8KSL=aKLi*CL/CSi
dKL26zKL1*CLl ICL2

! !C IF SIM=O'. THEN A COMPRESSIONAL WAVE IS INCIDENT.
CIM=CLI/(2.*Pl)

* . CALL COEF(BKS i.KLi,BKL2,SIM, CIMRHiOGANACI
!' IGAMAC-GAMAC*BKLI

& C GAMAC IS THE COMPRESSIONAL SCATTERING CROSS SECTION*FREQ'#Z.
WRITE(605) AKAGAMASGAMAC

55 POR~iATtZXF?.2,Z(S£XE3.4))
Go TO £

Z CONTINUE
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SUBROUTINE COEF (AKS~IAKL1, AKLZSX,CIRHA,GANMA)
DIMENSION AJ1C-400), AJZ(400), AJJ(400), YIC4,30), Y2(400)

o THIS SOLVES THE BOU1NDARY CONDITIONS FOR THE AMPLITUDES OF THE
C SCATTERED WAVES. THE AMPLITUDES ARE USED TO CALCULATE THE

a C SCATTERING CROSS SECTION.
CALL SPdES(AKS1ýN1,AJ1)
CALL SPBES(AKLI,N2,AJ2)
CALL SPBES(AKL2,NJ,AJ.3)
PIC,.141592654
IF(N1-NZ? 10,11,1±

10 N=N2
GO TO 12

11 NuNi
12 IF(N-N3) 1.3914,14

L3 NM=N3
GD TO 15

14~ NM=N
C NM IS THE UPPER LIMIT OF THE SUM IN THE SCATTERING CROSS SECTION.

15 CALL SNNN(Id(S1,NM,YI)
CALL SNMN(AKLINNtY2)
U ANNA-U.
00 100 NCiNN
F-FLOAT (NI-1.
ZERO-U.
OL±-V'lAJ2eO)-AKLl*AJ2UI*IJ)
UIZ=ZERU-F*tF41. )*AJ1 (MI
RAT.F* (1.-F) 4AKSI*42/?.
021=RAT*Aj2(H) -2.*AKLi*AJ2 (MUl)
022=F*(F+i.)Aý(F-i.)*AJ1(M?-AKS1'AJICH4±))
O3±=(F-i.)*AJ2(N)-AKL1*AJ2(N,1)
ROTzl.-F*#2tAKS1**2/2.
032-ROT'AJI (M)-AiCSi*AJ1(N+1)
CII1:F*Y2IN)-AKLI*Y2(M4II

Ci3-F*AJ3 (MI -AKL2*AJ3 (H+i)
C121zRAT*Y2 (N -2.*AKLl#Y2 (t440.
C122uF~iF41.)*((FaI.I*Y1H)-AKSI*Y±(11ti))
C23r=RHA#AKS±4#24AJ3(M) /2.

vC131=(F-1,)Y2(NI-AKL1Y2(M+t)
C132= RUT*Y1(MI-AICS1'Y1(M+±)
Zim.(O11CI+01241SI)
Z2x(02i*CI+a2*51)

ALH&Ci3'CI224 Z3+C2J*CI 326Zi+C23'Z34CI12-CI3Z*Z2*C13

OI~fCi3*Z2*CI3i+C23*Z3#CliitCi3#Z3*CI21-C23#Z1#CI31
URMuC2'3*(Ui2*031+Ci±2*CZ3L-U11*O32+Ci±±'CI3Z)+Cl3*(U21*DI2-CI2i*
10132-022DU314C1224 C131)

iCI32-CI22*O3i-U22*CI 31)
P=ARN/ URN
QzBRM/ URN
RDI MIDRN

TzbIM/URM
UENfl R4*2

C AN AND BN ARE THE SQUARES OF THE MAGNITUDE OF TESCATTERED WAVES.
AMzIP**Z+4S*2)/OEN
BN~tQ'Z+T**2 /DEN

* 11F111+*lgAiiKLF(+I)B/KL

I73

----- *



GAMNA=GAMMA#-GP
00CONTINUE

GAMMA a .68 4 G A MHA
RETURN
ENU

SUBROUTINE SNMN(ZTvNNY3 I
DIMENSION Y(400)

C THIS CALCULATES THE SPHERICAL NEUMANN FUNCTION(YEI)) OF ARG ZT ANJ
C UP TO ORDER NNs THE VALUES ARE CALCULATED BY UPWARD RECURSION

C RELATIONS*
ZEROO0.
00 1 I1=19400
£Y(I30o.
Yti)=ZERO-COS (ZTR/ZT
Y(2) ZERO-COS (ZT)/ZT* 4 2-SIN(ZT)/ZT
NTuN N 12

00 2 1=3,NT
AJ=FLOAT(I)-2.
Y(I) .( (2.AJ41.,)/ZT)4 Y (I-1)-Y (I-2)

2 CONTINUE
RETURN
E NO

SUBRUUT114E SPBES(ZT,NT,AJi
OIMENSION R(400), RJ(400), AJ(400)

C THIS CALCULATES THE SPHERICAL SESSELS FUNCTIONS(Aj(I)) OF ARG
C ZT UP To ORuER NT.
C THIS ROUTINE 1S VALIU FUR ARGUMENTS AS LOW AS 0.05.

NDIM=400
NZT=IFIX(ZT)
D0 100 I=±,NUIM

100 AJ(Ii:O.
C THIS SECTION SETS THE UPPER LIMIT OF NT FOR THE GIVEN ARG SUCH
C THAT ALL AJsS OF HIGHER ORDER CAN BE SET TO ZERO.

NzNZT#10
1. 00 1 I=Nv±850,5

Jul
FImFLOAT (I)
SECAxZT/ (Fl 4.5)
TACA=SQRT (1.-SECAo*2j
COSAmi..SECA
SINA=SQRT 41 +COSA'*02)
ALPxALCG(COSA tSQRT (COSA**2-i.3))
OELT=EXPiFl+.5) 4 1(TACA-ALP))/(2.41(Fl+.5)4SQRT(SINA))
IF (0ELT-1vC-27? 5s5,1

I CONTINUE
GO TO] 12

5 NsJ
FN=FLOAT (N)
NP UN 1+
NT=N+2
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NUsN+iG
EXPR=EXP (1.)
00 7 IýNU,1890,5
K3 I

* FIBFLOAT(I)
* 030. 434294

Al=2.* CFI-FN*1 .) *u4ALOG(ZT)
A2.( 2.*FI-2.*FN+1. )*DALOG(EX(PR)
A3&tFN+2.5)*UALUG(FN*2.)+CF1N-1.5)'0OALOG(FN-2.)
A4z(FI+3.5)0#UALUG(FI+.3.)
A5=(FI-.5)*O*ALOG (FI-i..)
E-Ai+ A 2+ A3- A4 -
IF(E410.) 999,7

7 CONTINUE
c THIS SECTION CALCULATES THE OLSSLL FUNCTIONS*

GO TO 12
9 NUmK

J=NU
R (NU +11)=0.
00 2 12.,NU
K1I
SJ=FLOAT(j)
RUJ)' ZT/ (I.,2*SJ-ZT*RCJ+ifl
IF(R(J)-iol 2,2,8

2 JUJ-i
GO TO 200

8 IF(J-2) 200#200ol4
*200 RJ (N'U+i) =R(NU I

RJ(NU)=1.
.JNU
AUPSNU-i
00 210 I±,vNUP

SJaFLOAT (Ji
RJ(J)V(1.+2.*SJ)/ZT*RJ(Je1-RJ(.J+2)

210 CONTINUE
ALPH4(RJ(i)-ZT*RJ(2)) *CQS(37)ZTz*SIN(BT)IIRJ(1)
D0 220 1=1,NT

220 AJ(I)=Rj(I)/ALPH
333 CONTINUE

RETURN
14 kJ(J+1)=R(J)

LAMZ=J.2
IF(LAMZ-NP) L5,44944

15 RJ(Jxi±.

iiJ-
RJ(J)z(1.+2.*S.J/ZT*RJ(J+1)-RJ(Jt2)

00 4 I=LAM2,NT

4 RJ(I3=RJ(I-±1*R(I-i)

IF(NT-NOMi 16,16,11
L 7 NTUNDt4
L6 00 6 I1,10T

6AJ(I)=RJ(I)/ALPN

r10S CONTINUE
RETURN

44 WRITE(6,45)
45 F(OR1AT(25H LAMBDA+Z#GE*N+i END XEQ)

GO TO 105
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12 WRITE46p13l ZT
13 FORHAT(26H ARG aES FTN TOO LARGE ZT=,E2O.8&s5X14H ENO EXECUTION)

STOP
END

PROGRAM LAYER(INPUT,OUTPUTTAPLS=INPUTTAPE6=OUTPUT)
CG THIS PROGRAM SOLVES THE PROBLEM OF AN ELASTIC LAYER,

* C BOUNDED ON EACH SIDE dY DIFFERENT IOEAL FLUI)S.
IMPLICIT COMPLEX(AsUF2GPoS)sREAL(K)

C IMPLICIT COMPLLX NOTATION MAY BE VALID FOR THE U/W COC 64O0 ONLY.
* C DIFFERENT COMPUTERS MAY REQUIRE ANOTHER NOTATION.
1. COMPLEX CC0OUEE#CA39CSINEOpJ

OIMENSION F(6)tKK(6)
C NECESSARY FUNCTION STATMLNTS FOLLOW.

CAS B) =A*CONJG (B)
ARG(AB) =0.5*lA÷CUNJG;;i))
CSINE(Ap3)=CSINCARGIAB))/ARG(AS)
J=CMPLX(O.,i.)

C DATA INPUT REQUIREMENTS TO THE PROGRAM FOLLOk-
C NNN IS THE NUMBER OF INDIVIDUAL SETS TO SE CONSIOEREODCOCLtCTAN)
C CF ARE THE ACOUSTIC WAVE VELOCITIES OF THE INCIDENT WAVEP THE
C LONGITUDINAL ANO TRANSVERSE WAVE IN THE PLATE AND THE VELOCITY OF
c THE TRANSMITTED WAVE RESPECTIVELY. RHOORHOO AND RHOF ARE THE
C DENSITIES OF THE PLATEp INCIDENT MEDIUM AND FINAL MEDIUM
C RESPECTIVELY IN GRAMS PER CUBIC CENTIMETER.

READ (5199) NNN
99 FORMAT(12)

NNXxl
100 REAO4S,10)CGO CLCTGFRHORHOORHOF
101 FORMAT(4F5.0,3F7.4)

C KH IS 2*PI*(THICKNESS/WAVELENGTH IN THE INCIDENT MEDIUM)OCHIO IS
*,C THE INITIAL INPUT ANGLE90CHI IS THE INCREMENTAL ANGLE OF CHANGE,

C CHIF IS THE FINAL ANGLE TO BE CONSIDERED AND X IS THE DEPTH/WAVE-
C LENGTH IN THE INCIDENT MEDIUM.

102 READ0(95*01109HCHIO,OCH1,CHIFX. '01 FORMAT(5F8.4_
PIzCMPLX (3.14L592654, 0 s)

RzRHO/RHO0
* ' Rl=RHOO/RHOF

c DETERMINATION OF THE ACOUSTIC RUNNING VECTORS FOLLOW-
KLHm(CC/CL) KH
KTHz CO/CT)*KH

(9 KFH=(CO/CF) *KH
u LL DETERMINES THE NUMdER OF ANGULAR INCREMENTS TO BE CONSIDERED

LL-IFIX((CHIF-CHIn)/0CHI)
C ALTHOUGH P1 IS SPECIFIEO COMPLEX, ONLY THE REAL COMPONZNI
C CODTRIBUTES--STATEIIENTS CHANGE DEGREES TO RAOIANS

OCHI=UCHI*PI/ J.80.
C FOLLOWING STA7ENENT SETS INITIAL ANGULAR PARAMETER.

CHIzGHIO
00 121 1L=iLL
IF(CHI)200,201200

200 IF(IL-1i 202,202,1ZO
201 CHIzCHI+OCHI

C FROM SNELL*S LAW
"C COMPLEXITY OF THE FOLLOWING STATEMENT ORIGIN4TES FROM LACK OF
C INTESTINAL FORTITUDE TO USE aETAxKH.CSIN(CHI).

202 8ETAuKHGCSIN(CMPLX(CHI,0.))
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c DIRECTION COSINE DETERMINATION FOLLOWS-
AOH=CMPLX(KH*COS(CHI)q,0.)

C CONJUGATE CONSIDERATIONS NECESSARY TO ASSURE A DECAYING hAVE IN
C THE MEDIUM FOR ANGLES OF INCIDENCE BEYOND THE CRITICAL ANGLE.

ALH=CONJG(CSQRT(KLHO*iOBETAS'2)II
ATH=CONJG(CSQRT(KTH*'2-3ETA**2)I

AF~zCONJG(CSýRT UCFH**2-3ETA*42))
IF (CF-Ca) 08, ±07,108

107 AH=(I.,0.J
GO TO 109

±08 AH=AOH/AFH
C THE SPECIFICATION OF AFH AND RI ASSUMES DIFFERENT MEDIA 3N EACH
C SIDE OF THE PLAEE IF DESIRED.

109 512m-2.*ALH4BETA/CATH44Z-BETA#*22
S22aALH/AGH
SZ4BtETA/ACH
532xR#(2.bLETA**2/KTH**2I.)

S±z(S±25S24-S 22) #AH
G11i.-CCOS(ATHi*CCOS CALH)
GZ=CSIN(ATHI*CSIN CALM)

A2=2.' (R1 4 512* 453446-CRI*S3Z4S±) 4G2+J*(R1'S3Z+S±)4 G4
1-J*R±#SlZS34*G3)

* A3s2.4(-Ri4Si24S34#Ujit(RI*S3Z-S±)4G~tJ#(,,R±*S32-S±)4G4
1-J*R1*S12*SJ44G3)
A4=2.*S12C*Rt4 SS324G1-(RtIPSI2'SJ'.-S12 GZ+J' (Rt%12534-SIP*G3

±-J4 Ri'532* 4G1.
* A5=2.'SI24CR±*S324 G±- (RL'Si.2'534451)4 G2-J4 (RI*S±2*S34+S1J4G3

t.J*Ri#S32#G4i
A6z=-8.*J*R14AH#S14(Si2#S3I.*CSIN(ALH)-S324CSIN(ATHH)
Da4.46(2.&R±*S12%32$S34*GI(Ri*((S±24S34)aa"2,S324*2)+S1.#42)4G2

4 1J*(S±2*S24-S22 4*AHtR±I'i-SI2'S34*G3+S32zG4i))
F(i)=Ai/D
F (2) =-2.'IA2/OU
F(3)s.*4A3/U
F(4; -2.*A4/O
F(S) 22.#A5/O
F(6)=-A6*CEXP CJ#AFH)/O
00 203 14:1,6

203 KKCIJ)aCABSCF(IJ))*42
C THE FOLLOWING DETERMINES THE SNELL*S LAW CRITICAL ANGLE FOR THE
G COMPRESSIONAL AND TRANSVERSE ACOUSTIC WAVES -4ELATIVE TO ANGLES OF
C INý;IJENCE IN DEGREES.

CRITL=ASIN(CC/CL)* L60./PI(I. CRITT=ASINtC0/CTJ'I80./i'I
THETA=CHrvi8a .i PI

PAW G THE FOLLOWINb CHECKS TO DETERMINE IF ENERGY IS CONSERVED.
CHEKzREAL(KKUi)+CAFH/AUH)aKK(5)/R±)

C STATEMENTS--HOWEVER, RECALL THAT X IS THE (DEPTH INTO THE PLATE)
C DIVIDED BY (WAVELENGTH IN THE INCIDENT MEDIUM).

ARG=-J*2.*PI*ALH X/i(H

c TH FOLOWN6 LTLMINS TH COPRESIOAL ND RANVERSE

PHIN=F(2) *CEXP (ARGI)
PHIPzF(3) *CEXP (-ARGI)
PSINmF(4) *CEXP (ARG21
PSIP=F(5)1ucEXP(-ARGZl
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PHI=PHIN4+PHIP
PSIaPSIN+PSIP
PHN=PHIP-PHIN

* PSN=PSIP-PSIN
C THE FOLLOWING OETERMINES THE ENERGY PER UNIT AREA PER UNIT TIME
C (INTENSITY) FLGWING IN A DIRECTIUN PERPENDICULAR TO TME PLATE
C SiURFACE (MULTIPLIED BY THE SOUND VELOCITY IN THE INCIDENT MEDJIUM)
C OIVIUEUi 6Y THlE (UENSITY OF THE PLATE MULTIPLIED 13Y THE FOURTH
c POWER OF THE CIRCULAR FREQUENCY).

GXu(±.,KH)'iARG,(ALHgALHVI1CAB(PHLNPHIN)-CABCPHIPPHIPJ)
LOARG(ALHt-ALH -)*(CAt3(PHIN,PHIP) -CAB CPHIPPHINI)
24ARG(ATH,ATH)*(CAO(PSIN,PSIN)-CA6(PSIP,PSIP))

* ~3.ARGiATH,-ATH)-(CAd(PSIN,PSIP)-CAF3(PSIP,PSIN)))
qi3=i.+2.*(t3ETA**2 +CAU(ALHvALH)-KLH4 *2 )/(KTii*42)

83=(2**8ETA*42 -KLH**2 4Oo5*KTH**2 )i (KTH*~2
B4z(2.*8ETA**2 -U.5*KTH**2 )1 (KTH**2)

C THE FOLLOWING UETERNINES THE ENERGY PER UNIT AREA PER UNIT TIME
C (INTENSITY1 FLUWING IN A DIRECTION PARALLEL TO THE PLATE SURFACL
C MULTIPLIEU BY THE SOUND VELOCITY IN THE INCIOENT MEDIUM DIVIDED
C BY THE FOURTH POWER OF THE CIRCULAR FREaUENCY.

GYrn(1.i'KtI)*(UETA*Bi*CA8(PHIpPHI? 4BETAZ'2CAB(PSIps1)
1-(4.'E3ETA/KTH**2.)*CA6(ALHALH.C(CA3(PHlPP4IN4C+Aa(PHIN,PHIP))
24.CAti(ATH,ArH)-(CAO3(PsIPPSIN)+CAa3(PSIN,PSIP)~)
3+i3*(CAB(PSNPH1)*ATH+CA6(PHIPSN)*CONJG(ATH) I

44( CAB (PHN, PS1I) ALH+CAB.( PSI PHiN) CONJG (ALHI))
IF(CHI-REAL(ASIN(GO/CL))) 300, 300,30i

300 BN1i
13P=CSlNE(ALHALH)
PN~±
PP=CSINE (ATH, ATH)
GO To 304

301 3N=CSlNC(ALHj-ALH)

IF(CHI-kEAL CASIN (CO/CT))) 302,302,303
*302 PN~i

PPZCSINE (ATM, ATH)
GO TO 304

303 PNw=CSINE(ATH,-ATIIj

C TH FOLLOWING SPECIFIES AMPLITUDES ANU ALGEBRAIC TERMIS NECESSARY
C FOR THE DETERMINATION OF THE TOTAL ENERGY BEING PROPAGATED

c PARALLEL TO THE PLATE BOUNDARIES AS A FUNCTION OF THE INCIDENT
C ANGLEI*E.,SIGtIA IS THE INTEGRATECJ INTENSITY ACkOSS THE PLATE,

AAmF (1)
88mF (2)
CC=F(3)
COOF14)

FF-F(6)
P1'm(CAB(89B6,CEXP(-J*ARG(ALHP-ALHi)).CAt(CCCC)*CEXP(J'4RG(ALN,

l-ALH#I)) ON+CCA 8i1U *CLX %-JXA RG ALH p ALCAB A3CK;ppOýI" COLXPS(j*
2ARG(ALHALH)) )*BP

P~s(CAB(8B;CC)4'CEXP(:J4ARG(ArH,-ATHI))CAB(EEEE)ICEXP(J4ARG(ATH,

2ARGIAYHjATHJ)))*PP

IATIO)))PP

1,ALH)) )*ATH*CSINE(ATH, ALH)
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l9ALHl) I)ATH*CSlNE(-ATHsALHl
P7=(CAB(CCJO)*CEXP(J*ARG(ALH,ATHJ )-CA62Ba,EE) 4CEXP(-J*AiG(ALH

lATH)J)*ATH*C~oINE(-ATi-tALH)

lv-P.Ii41 1*ALH*GSINL CALH ,ATH)
SIGMA=BETA*(3 4 ,P±+d24P2-4.#(CAB(ALHALH)'P3+CA8CATH,ATH)*P4))

±+2.fa33*(ARG(P5,P5)-ARG(P6,P6)I-2.*b4'(ARG(p6,P6)4-ARG(P7,a7))
C SPECIFTNG REAL IN THE FOLLOWING ONLY SERVES TO ACCOMOOATj MINIMUM
C OUTPUT -TELOS AS TYlE IMAGINARY COMPONENT OF GXGY, AND SIGMA MUST
C c3E ZERi TNCE THESE PARAMETERS ARE REAL.

305 KX=REAL X~)
KY=REA L(CGY I
TENGY=REAL (SIGMA)
VR=CG*KH/ REAL (BETA)

116 WRITE(6,204)
204. FORMAT(iHi)

WRITE Cb,2L5)CO,C'.,CTRHOKHCRITLCRITT
205 FQRMAT(3X,5MCO = ,F5.0#3Xl5HCL z F5.0,3Xv5HCT v *F5.09

t4Xp6HRHO = F4..?,3AjbHK(0H ;zF4.ls,3xll3HPHIL(CRIT) - q6I
Z3X,1l3HPHIT(CRl7J = $Fb.3#/I

WRITE 16,117)
117 FORMAT 45X,5HTHErA, 5X 2HAA , 6X, 2148L396XwHCCt6X9 2HUO,6X, 2HEEP

£k),2HF~o3XSHCHECKp9XY ýHIX41lX,2HIY,6X,2HCR,12X,5HSIGMA)
1±8 W.-ITE(6,11gTHETA,(KK(NeH),NM~1,6),CHEKKXKYVRTENGY

<K 19 FORI;AT4 x, ja6(2X,F6.3, 2XF5..3s2(2X,FII.4) ,2X:,Fb.2,2X,F-11.4)
121 C~ONTINU.E

C FOLLOW2'NG IJETERMINES REPEAT OF PRECEEUING PROCESSES UNTIL MAXIMUM
INCIO'NT ANGLE SPECIFIEO IS ACHIEVED.
IFNNX-NNN)i0 100 0,1~2

122 CONTINUE
STOP
END

79I
. . . .. . .1



REFERENCES

1. W. Weeks and :\. Assur, "The Mechanical Properties of Sea Ice," Cold
Regions Resea : h and Engineering Laboratory, Hanover, New H1ampshire
(1967).

2. M. Ewing and A.P. Crary, "Propagation of Elastic Waves in Ice. Part
II," Physics 5, 181-184 (1934).

3. J. Oliver, et al., "Elastic Waves in Pack Ice," Trans. Amer. Geophys.
Union 35, 282-292 C1954).

4. K. Hunkins, "Seismic Studies of Sea Ice," J. Ceophys. Res. 65, 3459-
3472 (1960).

a. G.K.C. Clarke, "Seismic Survey - Northwest Greenland," Cold Regions
Research and Engineering Laboratory, Hanover, New Hampshire, Rpt.
191 (1966).

6. A.P. Crary, "Seismic Studies on Fletcher's Ice Island, T-3," Trans.
Amer. Geuphys. Union 35, 293-300 (1954).

7. R.E. Bunniey and J.G. Hanse, "Elastic Waves in Sea Ice," (manuscript
in preparation).

8. 11. Lamb, "On Elastic Waves in a Plate," Proc. R. Soc. London A93,
114-128 (1917).

9. M.F.M. Osborn and S.D. Hart, "Reflection and Guiding of an Exponential
Pulse Ly a Steel Plate in Water, I," J. Acoust. Soc. Am. 17, 1-18
(1945).

10. R.R. Goodman and R.E. Bunney, "Surface Waves on Elastic Plates ii a
Fluid Medium," (to be submitted to J. Acoust. Soc. Am. for public&tion).

11. R.E. Bunney, et al., "Rayleigh and Lamb Waves on Cylinders," J.
Acoust. Soc. Am. 42, 1223-1233 (1969).'

12. M. Ewing, et al., "Propagation of Elastic Waves in Ice. Part I,"
Physics 5, 165-168 (1934).

13. N. Smith, "Determining the Dynamic Properties of Snow and Ice by
Forced Vibration," Cold Regions Research and Engineering Laboratory,
Hkanover, New Hampshire, Rpt. 216 (1969).

14. R.E. Green and L. MacKinnon, "Determination"of the Plastic Constants
of Ice Single Crystals by an Ultrasonic Pulse Method," J. Acoust.
Soc. Am. 6, 1292L (1956).

15. V.V. Bogorodskii, "Elastic Moduli of Ice Crystals," Soviet Physics -

Acoust. 10, 124-126 (1964).

80

5..,



16. H. Roethlisberger, "Ultrasonic Pulse Measurements in Anisotvopic
Lake Ice," Cold Regions Research and Engineering Laboratory, Hanover,
New Hamprhire, Rpt. 126 (1966).

17. E.R. Pounder and P. Stalinski, "Elastic Properties of Arctic Sea Ice,"
Intern. Assoc. Sci. Hydrol. Pub. 54, 35 (1960).

18. M.P. Langlehen, "Young's Modulus for Sea Ice," Can. Journ. Phy. 40,
1-8 (1962).

19. E.R. Pounder, The Physics of Ice (Pergammon Press, London, 1965).

20. A. Assur, "Composition of Sea Ice and Its Tensile Strength," National
Academy of Sciences-National Research Council Pub. 598, 106-138 (1958).

21. R.E. Bunney and J.G. Hanse, "Acoustic Velocity Profiles in Annual
Sea Ice," (submitted to J. Acoust. Soc. Am. for publication).

22. M.P. Langleben and E.R. Pounder, "Acoustic Attenuation in Sea Ice,"
Macdonald Physics Laboratory, McGill University Rpt. S-14 (1968).

23. J.G. Hanse and R.E. Bunney, "Attenuation of Acoustic Waves in Annual
Sea Ice - A First Approximation," (submitted to J. Acoust. Soc. Am.
for publication).

24. J.G. Hanse and R.E. Bunney, "A Calculationi of the Acoustic Shear
Wave Attextuation in Sea Ice," Applied Physics Laboratory, University
of Washington Rpt. 7310 (1973).

25. G. Frankenstein and R. Garner, "Equations for Determining the Brine
Volume of Sea Ice from -0.5* to -22,9*C,11 J. Glaciology 6, 943-44
(1967).

26. N. Untersteiner, "On the Mass and Heat Budget of Arctic Sea Ice,"
Arch. Meteoral Bioklimatal 12, 151-182 (1961).

27. W.M. Ewing, W.S. Jardetzky, and F. Press, Elastic Waves in Layered
Media (McGraw-Hill, New York, 1957).

28. C. Maxwell., Scientific Papers (Cambridge University Press, Cambridge,

England, 1890)

4 29. W. Voigt, Ann. d. Phys. 47, 671 (1892).

79. W.P. Mason, Physical Acoustics and the Properties of Solids (Van
Nostrand, Princeton, New Jersey, 1958).

31. D.R. Bland, The 71eor of Linear Viscoelasticity (Pergammon Press,
New York, 1960).

32. H. Kolsky, Stress Waves in Solids (Dover, New York, 1963).

81

- •I ii



33. F. Press and M. Ewing, '"Theory of Air Coupled Flexural Waves," J.
Appl. Phys. 22, 892-899 (July 1951).

34. Lord Rayleigh, "On Waves Propagated Along the Plane Surface of an
Elastic Solid," Proc. London Math. Soc. 17, 4-11 (1885).

35. I.A. Viktorov, Rayleigh and Lamb Waves (Plenum Press, New York, 1967).

36. R.E. Bunney and R.R. Goodman, "Energy of the Acoustically Excited
Surface Wave on a Flat Semi-Infinite Elastic Medium," J. Acoust. Soc.
Am. 53, 1658-1673 (1973).

37. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, (McGraw-
Hill, New York, 1953).

38. H. Love, The Mathematical Theory of Elasticity (Cambridge University
Press, New York, 1927).

39. C.F. Ying and R. Truell, "Scattering of a Plane Longitudinal Wave by
a Spherical Obstacle in an Isotropically Elastic Solid," J. Appl.
Phys. 27, 1086-1096 (1956).

40. T.M. Lee, "Method of Determining Dynamic Properties of Viscoelastic
Solids Employing Forced Vibrations," J. Appl. Phys. 34, 1524-1529
(1963).

41. M.A. Boit, "Theory of Elasticity and Consolidation for a Porous
Anisotropic Solid," J. Appl. Phys. 26, 182-185 (1955).

42. M.A. Boit, "Theory of Propagation of Elastic Waves in a Fluid-
Saturated Porous Solid, Part I, Low Frequency Range," J. Acoust. Soc.
Am. 28•, 1968 (1956).

43. M.A. Boit, "Theory of Propp6ation of Elastic Waves in a Fluid-
Saturated Porous Solid, Part II, High Frequency Range," J. Acoust.
Soc. Am. 28 179 (1956).

44. T.M. Lee, "Spherical Waves in Viscoelastic Media," Cold Regions
Research and Engineering Laboratory Rpt. 158 (1965).

45. B. Linsay, Mechanical Radiation (McGraw-Hill, New York, 1960).

82

-777:4



UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA- R&D
(Security clasaificetion of title, body of abstrect and indexing annotation must be entered when the overall report is clasaified)

I. ORIGINATIN G ACTIVI 1Y (Corporate author) 2.0. REPORT SECURITY C LASSIFICA TION

University of Washington Unclassified
Seattle, Washington 98195 Zb GRoup

3. REPORT TITLE

FEASIBILITY OF ACOUSTICALLY DETERMINING THE THICKNESS OF SEA ICE (U)

4. DESCRIPTIVE NOTES (Type of reporr and inclusive date&)

Final Report
S. AUTHOR(S) (Last name. firet name, initial)

Bunney, Robert E.

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS

April 1974 82 45
So. CONTRACT OR GRANT NO. 94. ORIGINATOR'S REPORT NUMBER(S)

DAAG 17-73-C-0028
b. PROJECT NO.

C. 9b. OTHER REPORT NO(S) (Any othernumber. that may be aaelaed

this report)

APL-UW 7317
10. AVA ILABILITY/LIMITATION NOTICES

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES f2. SPONSORING MILITARY ACTIVITY

U.S. Army Natick Laboratories, Natick,
Massachusetts 0176011. ABSTRACT

The results of laboratory and fiel• tests on the acoustic properties of sea
ice are reported. Velocity, density and salinity profiles were taken and
the results used to predict depth dependence of the elastic constants of the
medium. Shear and compressional wave attenuation calculations were made and
empirically "fit" to the data to determine frequency dependence. The relative
energy reflected from the ice-water interface from an incident wave of unit
amplitude is calculated and the ability to detect this energy at the ice
surface is shown. As a result of these tests, the feasibility of measuring
sea ice thickness using pulse echo techniques is demonstrated, and recommen-

* dations for further study are made. Preliminary tests to measure Lamb wave
propagation were successfully made and the results are reported. (U)

I.o-
DD I 1473 UnclassifiedD N0Security Classification



* Unclas-ified

* ~~~~~~Security Classification _____________________

*14. wo LINK A LINK 0 LINK C
_____WORDS_ AOL. WT ROLIE WT ROLK Wi'

Acoustic Measurements of Sea Ice

Sea Ice Thickness, Acoustic Measurements of

INSTRUCTIONS
t.. ORIGINATING ACTIVITY: Enter the name and Petdress imposed by security classification, ucing standard mtatae~nnts

*of the contractor, subcontractor, grantee, Departm-!nt of De- such as:
tenses activity or other organizaticin (corp~orate author) issujln. (1) "Qualified requesters may obtain copies of this

~4P~rt.report from DDC~"
2a. REPORT SECUR[TY CLASSIFICATION. Enter the over- 2 Frinanucmn n ismnto ftiall security classification of the report. Indicate whether reprtbyDD i no and orssemiaone ti"Restricted Data" Is Included. Marking is to be in accord- rpr yDCi o ulule.
oncs w~th apprepriate security re-julations. (3) "U. S. Government agencies may obtain copies of
2h. GPOUP: Amtornotic downgrading is sperfifed in DoD DL- this report directly from DDC. Other qualified DDC
rective 5200. 10 and Armed Forces Industrial Manual, Enterusr hlreetthcg
the group numbnnr. Also, when applicable, show that optional - '
markings have been used for Group 3 arnd Grow' 4 as author- (4) '"U. S. military agencies tmay obtain copies of thisized, report directly from DDC. Other qualified users
3. REPORT TITLE: Enter the comnplte repost title In all shall request throug~h
capital letters. T itein al ae hudbe unclassified, ______ _______

tio.so il ctaieaificsiion in all capitals in parenthesis k5) "All distribution of this report is controlled. Qttal-

immediately flingthe title. etrheItlad DDC users shall request through

report, e.g.. kinterim, progress, sumnmary, annual, or final. If it.e report has been furnished to the Office of Technical
Give the inclusive dates when a apecific reporting period is Services, Department of Commerce, for sale to the public, mndi.* covered. cats this fact arnd enter the price, if known.
S. AUTHOR(S): Enter the name(ia) of autIl:_r(9) as shown on IL SUPPLEMENTARY NOTES: Use for additional explasm-
or in the report. Enter last name, fi'-zt name, middle initial. t-3ry notes.
It military, suhow rank end bral,211 of seervice. The name of

* the principal author iw sat ahsoiute minimum requirement. 12. SPONSORING MILITARY ACTIVITY. Enter the namne of
the departmental project office or laboratory sponsoring (par-6.REPORT flATE_ Enter the date of the report as day, ing for) the ressearch and development. Include sddresi6month, year; or month, year. If more than one date appears

cn the report, use date of publicaktion. 13. ABSTRACTt Enter an abstract giving a brief end factual
7 a.TOTL N~t'4ER F PGES:Thetotl pae cunt summary of the documnent indicative of the report, even thoughshoul fOTLo NIACr O AE: h oal pagiaonpceusie. enuiteth it may also appear elsewhere in the body of the technical re-nhumbe flow pages c pnaginangionbpoceduires eene h port. 1f additional apace is required, a conirrusa~un sLeet shallnumbr o pags cntaiinginfomat,)mbe attached,

7b. NUMBER OF REFERENrES; Enter the tota number of It is highly desirable that ths abstract ot classified reportsreferences cited in the report. be unclassified. Eisch paragraph of the abstract shall end with
g.CONTRACT OR GRANT NUMBER, If appropriate, enter an indication of the military security closuificetion of the In%-
t a pplicable number of the contract or grant under which formation in the paragraph, represented as (TS~), (S.). (C'), or (U).

the report was written. There is no limitation on the length of the abstract. How-
Sb, 6c, lk 8d. PROJECT NUM13ER: Enter the appropriate *ever the au~geatnd Length is frain 150 Wu 225 words.military departrment identification, such as project number, 14KE WOD:Kywrsretcicly eangltnssupoetnumber, sysiatnis numbers, task number. etc, 4 E OD:Kywrsaetcnclymaigu am

.zuhpojector short phrase* that chetacterize as report end may be used as
9a. ORIGINATOR'S RfEPORT NVWOdER(S) Enter the offi- index entries for cataloging the report. Key words imust be
cial report number by which the doc% ment will be identified setected so that no security classification is reqaiired. Identi-
and controlled by the originating act~vity. This number must flrar, such as equipment model designation, trade name., military
be unique to this report. pmvject code name, geographic location, may be used as keyI Vb. OTH4ER REPORI NUMBER(S): If the report has be-en word& but wi!, be fullrw~ed by an indication of technical conk-
a.ssigned any other report numbers (either by the orlainat( text. The essa!&ninsnt of links. rates. and weighuts in optional.
at by taspoasaor). also enter this. rumber(s),

Itationa on further disswininatlon of the report, other than thus.

AVAIABIITY/.'MTATON NTICS: nteranyli~Unclass~ifi ed

Secutaity Classificationi


